On bounded Dual-valued derivations on certain Banach algebras
Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 107
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider the class $\mathfrak{D}(\mathcal{U})$of bounded derivations $\mathcal{U}\overset{d}\to\mathcal{U}^*$defined on a Banach algebra $\mathcal{U}$ with values in its dual space $\mathcal{U}^*$so that $\langle x,d(x)\rangle =0$ for all $x\in \mathcal{U}$.The existence of such derivations is shown, but lacking the simplest structure of an inner one.We characterize the elements of $\mathfrak{D}(\mathcal{U})$if $\operatorname{span}(\mathcal{U}^2)$ is dense in $\mathcal{U}$or if $\mathcal{U}$ is a unitary dual Banach algebra.
DOI :
10.2298/PIM0900107B
Classification :
46H35 47D30
Keywords: Dual Banach algebras, approximation property, dual Banach pairs, nuclear operators, shrinking basis and associated sequence of coefficient functionals
Keywords: Dual Banach algebras, approximation property, dual Banach pairs, nuclear operators, shrinking basis and associated sequence of coefficient functionals
@article{10_2298_PIM0900107B,
author = {A. L. Barrenechea and C. C. Pe\~na},
title = {On bounded {Dual-valued} derivations on certain {Banach} algebras},
journal = {Publications de l'Institut Math\'ematique},
pages = {107 },
publisher = {mathdoc},
volume = {_N_S_86},
number = {100},
year = {2009},
doi = {10.2298/PIM0900107B},
zbl = {1261.47051},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0900107B/}
}
TY - JOUR AU - A. L. Barrenechea AU - C. C. Peña TI - On bounded Dual-valued derivations on certain Banach algebras JO - Publications de l'Institut Mathématique PY - 2009 SP - 107 VL - _N_S_86 IS - 100 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0900107B/ DO - 10.2298/PIM0900107B LA - en ID - 10_2298_PIM0900107B ER -
%0 Journal Article %A A. L. Barrenechea %A C. C. Peña %T On bounded Dual-valued derivations on certain Banach algebras %J Publications de l'Institut Mathématique %D 2009 %P 107 %V _N_S_86 %N 100 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0900107B/ %R 10.2298/PIM0900107B %G en %F 10_2298_PIM0900107B
A. L. Barrenechea; C. C. Peña. On bounded Dual-valued derivations on certain Banach algebras. Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 107 . doi: 10.2298/PIM0900107B
Cité par Sources :