Nine-stage Multi-derivative Runge-Kutta method of order 12
Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 75
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A nine-stage multi-derivative Runge--Kutta method of order 12, called HBT(12)9,is constructed for solving nonstiff systems of first-order differential equations of the form $y'=f(x,y)$, $y(x_0)=y_0$.The method uses $y'$ and higher derivatives $y^{(2)}$ to $y^{(6)}$ as in Taylor methodsand is combined with a $9$-stage Runge--Kutta method.Forcing an expansion of the numerical solution to agree with a Taylor expansion of the true solutionleads to order conditions which are reorganized into Vandermonde-type linear systemswhose solutions are the coefficients of the method.The stepsize is controlled by means of the derivatives $y^{(3)}$ to $y^{(6)}$.The new method has a larger interval of absolute stability than Dormand--Prince's DP(8,7)13Mand is superior to DP(8,7)13M and Taylor method of order 12 in solving several problemsoften used to test high-order ODE solvers on the basis of the number of steps, CPU time,maximum global error of position and energy.Numerical results show the benefits of adding high-order derivatives to Runge--Kutta methods.
DOI :
10.2298/PIM0900075N
Classification :
65L06 65D05 65D30
Keywords: general linear method for non-stiff ODE, Hermite-Birkhoff method, Taylor method, maximum global error, number of function evaluations, CPU time
Keywords: general linear method for non-stiff ODE, Hermite-Birkhoff method, Taylor method, maximum global error, number of function evaluations, CPU time
@article{10_2298_PIM0900075N,
author = {Truong Nguyen-Ba and Vladan Bo\v{z}i\'c and Emmanuel Kengne and R\'emi Vaillancourt},
title = {Nine-stage {Multi-derivative} {Runge-Kutta} method of order 12},
journal = {Publications de l'Institut Math\'ematique},
pages = {75 },
publisher = {mathdoc},
volume = {_N_S_86},
number = {100},
year = {2009},
doi = {10.2298/PIM0900075N},
zbl = {1265.65134},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0900075N/}
}
TY - JOUR AU - Truong Nguyen-Ba AU - Vladan Božić AU - Emmanuel Kengne AU - Rémi Vaillancourt TI - Nine-stage Multi-derivative Runge-Kutta method of order 12 JO - Publications de l'Institut Mathématique PY - 2009 SP - 75 VL - _N_S_86 IS - 100 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0900075N/ DO - 10.2298/PIM0900075N LA - en ID - 10_2298_PIM0900075N ER -
%0 Journal Article %A Truong Nguyen-Ba %A Vladan Božić %A Emmanuel Kengne %A Rémi Vaillancourt %T Nine-stage Multi-derivative Runge-Kutta method of order 12 %J Publications de l'Institut Mathématique %D 2009 %P 75 %V _N_S_86 %N 100 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0900075N/ %R 10.2298/PIM0900075N %G en %F 10_2298_PIM0900075N
Truong Nguyen-Ba; Vladan Božić; Emmanuel Kengne; Rémi Vaillancourt. Nine-stage Multi-derivative Runge-Kutta method of order 12. Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 75 . doi: 10.2298/PIM0900075N
Cité par Sources :