Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
@article{10_2298_PIM0900075N, author = {Truong Nguyen-Ba and Vladan Bo\v{z}i\'c and Emmanuel Kengne and R\'emi Vaillancourt}, title = {Nine-stage {Multi-derivative} {Runge-Kutta} method of order 12}, journal = {Publications de l'Institut Math\'ematique}, pages = {75 }, publisher = {mathdoc}, volume = {_N_S_86}, number = {100}, year = {2009}, doi = {10.2298/PIM0900075N}, zbl = {1265.65134}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0900075N/} }
TY - JOUR AU - Truong Nguyen-Ba AU - Vladan Božić AU - Emmanuel Kengne AU - Rémi Vaillancourt TI - Nine-stage Multi-derivative Runge-Kutta method of order 12 JO - Publications de l'Institut Mathématique PY - 2009 SP - 75 VL - _N_S_86 IS - 100 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0900075N/ DO - 10.2298/PIM0900075N LA - en ID - 10_2298_PIM0900075N ER -
%0 Journal Article %A Truong Nguyen-Ba %A Vladan Božić %A Emmanuel Kengne %A Rémi Vaillancourt %T Nine-stage Multi-derivative Runge-Kutta method of order 12 %J Publications de l'Institut Mathématique %D 2009 %P 75 %V _N_S_86 %N 100 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0900075N/ %R 10.2298/PIM0900075N %G en %F 10_2298_PIM0900075N
Truong Nguyen-Ba; Vladan Božić; Emmanuel Kengne; Rémi Vaillancourt. Nine-stage Multi-derivative Runge-Kutta method of order 12. Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 75 . doi : 10.2298/PIM0900075N. http://geodesic.mathdoc.fr/articles/10.2298/PIM0900075N/
Cité par Sources :