Infinite combinatorics in Function spaces: Category methods
Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 55 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The infinite combinatorics here give statements in which, from some sequence,an infinite subsequence will satisfy some condition -- for example, belong to some specified set.Our results give such statements generically -- that is, for `nearly all' points, or as we shall say,for quasi all points -- all off a null set in the measure case, or all off a meagre set in the category case.The prototypical result here goes back to Kestelman in 1947 and to Borwein and Ditor in the measure case,and can be extended to the category case also.Our main result is what we call the Category Embedding Theorem,which contains the Kestelman--Borwein--Ditor Theorem as a special case.Our main contribution is to obtain functionwise rather than pointwise versions of such results.We thus subsume results in a number of recent and related areas,concerning e.g., additive, subadditive, convex and regularly varying functions.
DOI : 10.2298/PIM0900055B
Classification : 26A03
Keywords: automatic continuity, measurable function, Baire property, generic property, infinite combinatorics, function spaces, additive function, subadditive function, mid-point convex function, regularly varying function
@article{10_2298_PIM0900055B,
     author = {N. H. Bingham and A. J. Ostaszewski},
     title = {Infinite combinatorics in {Function} spaces: {Category} methods},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {55 },
     publisher = {mathdoc},
     volume = {_N_S_86},
     number = {100},
     year = {2009},
     doi = {10.2298/PIM0900055B},
     zbl = {1265.26004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0900055B/}
}
TY  - JOUR
AU  - N. H. Bingham
AU  - A. J. Ostaszewski
TI  - Infinite combinatorics in Function spaces: Category methods
JO  - Publications de l'Institut Mathématique
PY  - 2009
SP  - 55 
VL  - _N_S_86
IS  - 100
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0900055B/
DO  - 10.2298/PIM0900055B
LA  - en
ID  - 10_2298_PIM0900055B
ER  - 
%0 Journal Article
%A N. H. Bingham
%A A. J. Ostaszewski
%T Infinite combinatorics in Function spaces: Category methods
%J Publications de l'Institut Mathématique
%D 2009
%P 55 
%V _N_S_86
%N 100
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0900055B/
%R 10.2298/PIM0900055B
%G en
%F 10_2298_PIM0900055B
N. H. Bingham; A. J. Ostaszewski. Infinite combinatorics in Function spaces: Category methods. Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 55 . doi : 10.2298/PIM0900055B. http://geodesic.mathdoc.fr/articles/10.2298/PIM0900055B/

Cité par Sources :