Domains of attraction of the real random vector $(X,X^2)$ and applications
Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 41 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Many statistics are based on functions of sample moments.Important examples are the sample variance $s^2(n)$, the sample coefficient of variation $SV(n)$,the sample dispersion $SD(n)$ and the non-central $t$-statistic $t(n)$.The definition of these quantities makes clear that the vector defined by$\big(\sum_{i=1}^n\!X_i^{},\,\sum_{i=1}^n\!X_i^2\big)$plays an important role.In the paper we obtain conditions under which the vector $(X,X^2)$belongs to a bivariate domain of attraction of a stable law.Applying simple transformations then leads to a full discussionof the asymptotic behaviour of $SV(n)$ and $t(n)$.
DOI : 10.2298/PIM0900041O
Classification : 60E05 60F05 62E20 91B70
@article{10_2298_PIM0900041O,
     author = {Edward Omey and Stefan Van Gulck},
     title = {Domains of attraction of the real random vector $(X,X^2)$ and applications},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {41 },
     publisher = {mathdoc},
     volume = {_N_S_86},
     number = {100},
     year = {2009},
     doi = {10.2298/PIM0900041O},
     zbl = {1265.60011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0900041O/}
}
TY  - JOUR
AU  - Edward Omey
AU  - Stefan Van Gulck
TI  - Domains of attraction of the real random vector $(X,X^2)$ and applications
JO  - Publications de l'Institut Mathématique
PY  - 2009
SP  - 41 
VL  - _N_S_86
IS  - 100
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0900041O/
DO  - 10.2298/PIM0900041O
LA  - en
ID  - 10_2298_PIM0900041O
ER  - 
%0 Journal Article
%A Edward Omey
%A Stefan Van Gulck
%T Domains of attraction of the real random vector $(X,X^2)$ and applications
%J Publications de l'Institut Mathématique
%D 2009
%P 41 
%V _N_S_86
%N 100
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0900041O/
%R 10.2298/PIM0900041O
%G en
%F 10_2298_PIM0900041O
Edward Omey; Stefan Van Gulck. Domains of attraction of the real random vector $(X,X^2)$ and applications. Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 41 . doi : 10.2298/PIM0900041O. http://geodesic.mathdoc.fr/articles/10.2298/PIM0900041O/

Cité par Sources :