Boundedness of the Bergman projections of $L^p$ spaces with radial weights
Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 5
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Necessary as well as sufficient conditions are given for the Bergmanprojections to be bounded operators on $L^p$ spaces on the unit disc.
@article{10_2298_PIM0900005D,
author = {Milutin Dostani\'c},
title = {Boundedness of the {Bergman} projections of $L^p$ spaces with radial weights},
journal = {Publications de l'Institut Math\'ematique},
pages = {5 },
publisher = {mathdoc},
volume = {_N_S_86},
number = {100},
year = {2009},
doi = {10.2298/PIM0900005D},
zbl = {1267.47048},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0900005D/}
}
TY - JOUR AU - Milutin Dostanić TI - Boundedness of the Bergman projections of $L^p$ spaces with radial weights JO - Publications de l'Institut Mathématique PY - 2009 SP - 5 VL - _N_S_86 IS - 100 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0900005D/ DO - 10.2298/PIM0900005D LA - en ID - 10_2298_PIM0900005D ER -
%0 Journal Article %A Milutin Dostanić %T Boundedness of the Bergman projections of $L^p$ spaces with radial weights %J Publications de l'Institut Mathématique %D 2009 %P 5 %V _N_S_86 %N 100 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0900005D/ %R 10.2298/PIM0900005D %G en %F 10_2298_PIM0900005D
Milutin Dostanić. Boundedness of the Bergman projections of $L^p$ spaces with radial weights. Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 5 . doi: 10.2298/PIM0900005D
Cité par Sources :