Boundedness of the Bergman projections of $L^p$ spaces with radial weights
Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 5 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Necessary as well as sufficient conditions are given for the Bergmanprojections to be bounded operators on $L^p$ spaces on the unit disc.
DOI : 10.2298/PIM0900005D
Classification : 47B38
@article{10_2298_PIM0900005D,
     author = {Milutin Dostani\'c},
     title = {Boundedness of the {Bergman} projections of $L^p$ spaces with radial weights},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {5 },
     publisher = {mathdoc},
     volume = {_N_S_86},
     number = {100},
     year = {2009},
     doi = {10.2298/PIM0900005D},
     zbl = {1267.47048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0900005D/}
}
TY  - JOUR
AU  - Milutin Dostanić
TI  - Boundedness of the Bergman projections of $L^p$ spaces with radial weights
JO  - Publications de l'Institut Mathématique
PY  - 2009
SP  - 5 
VL  - _N_S_86
IS  - 100
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0900005D/
DO  - 10.2298/PIM0900005D
LA  - en
ID  - 10_2298_PIM0900005D
ER  - 
%0 Journal Article
%A Milutin Dostanić
%T Boundedness of the Bergman projections of $L^p$ spaces with radial weights
%J Publications de l'Institut Mathématique
%D 2009
%P 5 
%V _N_S_86
%N 100
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0900005D/
%R 10.2298/PIM0900005D
%G en
%F 10_2298_PIM0900005D
Milutin Dostanić. Boundedness of the Bergman projections of $L^p$ spaces with radial weights. Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 5 . doi : 10.2298/PIM0900005D. http://geodesic.mathdoc.fr/articles/10.2298/PIM0900005D/

Cité par Sources :