Symmetries and Integrability
Publications de l'Institut Mathématique, _N_S_84 (2008) no. 98, p. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This is a survey on finite-dimensional integrable dynamical systems
related to Hamiltonian $G$-actions.
Within a framework of noncommutative integrability
we study integrability of $G$-invariant systems, collective motions and reduced integrability.
We also consider reductions of the Hamiltonian flows
restricted to their invariant submanifolds generalizing classical Hess--Appel'rot case
of a heavy rigid body motion.
@article{10_2298_PIM0898001J,
author = {Bo\v{z}idar Jovanovi\'c},
title = {Symmetries and {Integrability}},
journal = {Publications de l'Institut Math\'ematique},
pages = {1 },
publisher = {mathdoc},
volume = {_N_S_84},
number = {98},
year = {2008},
doi = {10.2298/PIM0898001J},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0898001J/}
}
Božidar Jovanović. Symmetries and Integrability. Publications de l'Institut Mathématique, _N_S_84 (2008) no. 98, p. 1 . doi: 10.2298/PIM0898001J
Cité par Sources :