On the Mean Square of the Riemann Zeta Function and the Divisor Problem
Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 71 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\Delta(T)$ and $E(T)$ be the error terms in the classical Dirichlet divisor problem and in the asymptotic formula for the mean square of the Riemann zeta function on the critical strip, respectively. We show that $\Delta(T)$ and $E(T)$ are asymptotic integral transforms of each other. We then use this integral representation of $\Delta(T)$ to give a new proof of a result of M. Jutila.
DOI : 10.2298/PIM0897071Y
Classification : 11M06 11N37 11L07
@article{10_2298_PIM0897071Y,
     author = {Yifan Yang},
     title = {On the {Mean} {Square} of the {Riemann} {Zeta} {Function} and the {Divisor} {Problem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {71 },
     publisher = {mathdoc},
     volume = {_N_S_83},
     number = {97},
     year = {2008},
     doi = {10.2298/PIM0897071Y},
     zbl = {1247.11109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0897071Y/}
}
TY  - JOUR
AU  - Yifan Yang
TI  - On the Mean Square of the Riemann Zeta Function and the Divisor Problem
JO  - Publications de l'Institut Mathématique
PY  - 2008
SP  - 71 
VL  - _N_S_83
IS  - 97
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0897071Y/
DO  - 10.2298/PIM0897071Y
LA  - en
ID  - 10_2298_PIM0897071Y
ER  - 
%0 Journal Article
%A Yifan Yang
%T On the Mean Square of the Riemann Zeta Function and the Divisor Problem
%J Publications de l'Institut Mathématique
%D 2008
%P 71 
%V _N_S_83
%N 97
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0897071Y/
%R 10.2298/PIM0897071Y
%G en
%F 10_2298_PIM0897071Y
Yifan Yang. On the Mean Square of the Riemann Zeta Function and the Divisor Problem. Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 71 . doi : 10.2298/PIM0897071Y. http://geodesic.mathdoc.fr/articles/10.2298/PIM0897071Y/

Cité par Sources :