Drazin Inverses of Operators With Rational Resolvent
Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 37
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $A$ be a bounded linear operator on a Banach space such that the resolvent of $A$ is rational.
If $0$ is in the spectrum of $A$, then it is well known that $A$ is Drazin invertible.
We investigate spectral properties of the Drazin inverse of $A$.
For example we show that the Drazin inverse of $A$ is a polynomial in $A$.
@article{10_2298_PIM0897037S,
author = {Christoph Schmoeger},
title = {Drazin {Inverses} of {Operators} {With} {Rational} {Resolvent}},
journal = {Publications de l'Institut Math\'ematique},
pages = {37 },
publisher = {mathdoc},
volume = {_N_S_83},
number = {97},
year = {2008},
doi = {10.2298/PIM0897037S},
zbl = {1199.47021},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0897037S/}
}
TY - JOUR AU - Christoph Schmoeger TI - Drazin Inverses of Operators With Rational Resolvent JO - Publications de l'Institut Mathématique PY - 2008 SP - 37 VL - _N_S_83 IS - 97 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0897037S/ DO - 10.2298/PIM0897037S LA - en ID - 10_2298_PIM0897037S ER -
Christoph Schmoeger. Drazin Inverses of Operators With Rational Resolvent. Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 37 . doi: 10.2298/PIM0897037S
Cité par Sources :