Complex Powers of Operators
Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 15

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We define the complex powers of a densely defined operator $A$ whose resolvent exists in a suitable region of the complex plane. Generally, this region is strictly contained in an angle and there exists $\alpha\in[0,\infty)$ such that the resolvent of $A$ is bounded by $O((1+|\lambda|)^\alpha)$ there. We prove that for some particular choices of a fractional number $b$, the negative of the fractional power $(-A)^b$ is the c.i.g. of an analytic semigroup of growth order $r>0$.
DOI : 10.2298/PIM0897015K
Classification : 47A99 47D03, 47D09, 47D62
@article{10_2298_PIM0897015K,
     author = {Marko Kosti\'c},
     title = {Complex {Powers} of {Operators}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {15 },
     publisher = {mathdoc},
     volume = {_N_S_83},
     number = {97},
     year = {2008},
     doi = {10.2298/PIM0897015K},
     zbl = {1261.47024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0897015K/}
}
TY  - JOUR
AU  - Marko Kostić
TI  - Complex Powers of Operators
JO  - Publications de l'Institut Mathématique
PY  - 2008
SP  - 15 
VL  - _N_S_83
IS  - 97
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0897015K/
DO  - 10.2298/PIM0897015K
LA  - en
ID  - 10_2298_PIM0897015K
ER  - 
%0 Journal Article
%A Marko Kostić
%T Complex Powers of Operators
%J Publications de l'Institut Mathématique
%D 2008
%P 15 
%V _N_S_83
%N 97
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0897015K/
%R 10.2298/PIM0897015K
%G en
%F 10_2298_PIM0897015K
Marko Kostić. Complex Powers of Operators. Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 15 . doi: 10.2298/PIM0897015K

Cité par Sources :