Complex Powers of Operators
Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 15
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We define the complex powers of a densely defined operator $A$
whose resolvent exists in a suitable region of the complex plane.
Generally, this region is strictly contained in an angle and there
exists $\alpha\in[0,\infty)$ such that the resolvent of $A$ is
bounded by $O((1+|\lambda|)^\alpha)$ there. We prove that for
some particular choices of a fractional number $b$, the negative
of the fractional power $(-A)^b$ is the c.i.g. of an analytic
semigroup of growth order $r>0$.
@article{10_2298_PIM0897015K,
author = {Marko Kosti\'c},
title = {Complex {Powers} of {Operators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {15 },
year = {2008},
volume = {_N_S_83},
number = {97},
doi = {10.2298/PIM0897015K},
zbl = {1261.47024},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0897015K/}
}
Marko Kostić. Complex Powers of Operators. Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 15 . doi: 10.2298/PIM0897015K
Cité par Sources :