Complex Powers of Operators
Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 15
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We define the complex powers of a densely defined operator $A$
whose resolvent exists in a suitable region of the complex plane.
Generally, this region is strictly contained in an angle and there
exists $\alpha\in[0,\infty)$ such that the resolvent of $A$ is
bounded by $O((1+|\lambda|)^\alpha)$ there. We prove that for
some particular choices of a fractional number $b$, the negative
of the fractional power $(-A)^b$ is the c.i.g. of an analytic
semigroup of growth order $r>0$.
@article{10_2298_PIM0897015K,
author = {Marko Kosti\'c},
title = {Complex {Powers} of {Operators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {15 },
publisher = {mathdoc},
volume = {_N_S_83},
number = {97},
year = {2008},
doi = {10.2298/PIM0897015K},
zbl = {1261.47024},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0897015K/}
}
Marko Kostić. Complex Powers of Operators. Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 15 . doi: 10.2298/PIM0897015K
Cité par Sources :