Lower Bounds for Estrada Index
Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If $G$ is an $(n,m)$-graph whose spectrum consists of the numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$, then its Estrada index is $\operatname{EE}(G)=\sum_{i=1}^n e^{\lambda_i}$. We establish lower bounds for $\operatorname{EE}(G)$ in terms of $n$ and $m$.
DOI : 10.2298/PIM0897001G
Classification : 05C50 05C35
@article{10_2298_PIM0897001G,
     author = {Ivan Gutman},
     title = {Lower {Bounds} for {Estrada} {Index}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 },
     publisher = {mathdoc},
     volume = {_N_S_83},
     number = {97},
     year = {2008},
     doi = {10.2298/PIM0897001G},
     zbl = {1199.05219},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0897001G/}
}
TY  - JOUR
AU  - Ivan Gutman
TI  - Lower Bounds for Estrada Index
JO  - Publications de l'Institut Mathématique
PY  - 2008
SP  - 1 
VL  - _N_S_83
IS  - 97
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0897001G/
DO  - 10.2298/PIM0897001G
LA  - en
ID  - 10_2298_PIM0897001G
ER  - 
%0 Journal Article
%A Ivan Gutman
%T Lower Bounds for Estrada Index
%J Publications de l'Institut Mathématique
%D 2008
%P 1 
%V _N_S_83
%N 97
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0897001G/
%R 10.2298/PIM0897001G
%G en
%F 10_2298_PIM0897001G
Ivan Gutman. Lower Bounds for Estrada Index. Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 1 . doi : 10.2298/PIM0897001G. http://geodesic.mathdoc.fr/articles/10.2298/PIM0897001G/

Cité par Sources :