An Enumerative Problem in Threshold Logic
Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 129

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The number of Boolean threshold functions is investigated. A new lower bound on the number of $n$-dimensional threshold functions on a set $\{0,1,\ldots,K-1\}$ is given.
DOI : 10.2298/PIM0796129K
Classification : 05A16 94C10
@article{10_2298_PIM0796129K,
     author = {\v{Z}ana Kovijani\'c Vuki\'cevi\'c},
     title = {An {Enumerative} {Problem} in {Threshold} {Logic}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {129 },
     publisher = {mathdoc},
     volume = {_N_S_82},
     number = {96},
     year = {2007},
     doi = {10.2298/PIM0796129K},
     zbl = {1250.05020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0796129K/}
}
TY  - JOUR
AU  - Žana Kovijanić Vukićević
TI  - An Enumerative Problem in Threshold Logic
JO  - Publications de l'Institut Mathématique
PY  - 2007
SP  - 129 
VL  - _N_S_82
IS  - 96
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0796129K/
DO  - 10.2298/PIM0796129K
LA  - en
ID  - 10_2298_PIM0796129K
ER  - 
%0 Journal Article
%A Žana Kovijanić Vukićević
%T An Enumerative Problem in Threshold Logic
%J Publications de l'Institut Mathématique
%D 2007
%P 129 
%V _N_S_82
%N 96
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0796129K/
%R 10.2298/PIM0796129K
%G en
%F 10_2298_PIM0796129K
Žana Kovijanić Vukićević. An Enumerative Problem in Threshold Logic. Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 129 . doi: 10.2298/PIM0796129K

Cité par Sources :