Some Questions Concerning Minimal Structures
Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 79 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

An infinite first-order structure is minimal if its each definable subset is either finite or co-finite. We formulate three questions concerning order properties of minimal structures which are motivated by Pillay's Conjecture (stating that a countable first order structure must have infinitelt many countable, pairwise non-isomorphic elementary extensions).
DOI : 10.2298/PIM0796079T
Classification : 03C15
@article{10_2298_PIM0796079T,
     author = {Predrag Tanovi\'c},
     title = {Some {Questions} {Concerning} {Minimal} {Structures}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {79 },
     publisher = {mathdoc},
     volume = {_N_S_82},
     number = {96},
     year = {2007},
     doi = {10.2298/PIM0796079T},
     zbl = {1199.03026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0796079T/}
}
TY  - JOUR
AU  - Predrag Tanović
TI  - Some Questions Concerning Minimal Structures
JO  - Publications de l'Institut Mathématique
PY  - 2007
SP  - 79 
VL  - _N_S_82
IS  - 96
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0796079T/
DO  - 10.2298/PIM0796079T
LA  - en
ID  - 10_2298_PIM0796079T
ER  - 
%0 Journal Article
%A Predrag Tanović
%T Some Questions Concerning Minimal Structures
%J Publications de l'Institut Mathématique
%D 2007
%P 79 
%V _N_S_82
%N 96
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0796079T/
%R 10.2298/PIM0796079T
%G en
%F 10_2298_PIM0796079T
Predrag Tanović. Some Questions Concerning Minimal Structures. Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 79 . doi : 10.2298/PIM0796079T. http://geodesic.mathdoc.fr/articles/10.2298/PIM0796079T/

Cité par Sources :