Some Questions Concerning Minimal Structures
Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 79
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
An infinite first-order structure is minimal if its each definable subset is either finite or
co-finite. We formulate three questions concerning order properties of minimal structures which
are motivated by Pillay's Conjecture (stating that a countable first order structure must have
infinitelt many countable, pairwise non-isomorphic elementary extensions).
@article{10_2298_PIM0796079T,
author = {Predrag Tanovi\'c},
title = {Some {Questions} {Concerning} {Minimal} {Structures}},
journal = {Publications de l'Institut Math\'ematique},
pages = {79 },
year = {2007},
volume = {_N_S_82},
number = {96},
doi = {10.2298/PIM0796079T},
zbl = {1199.03026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0796079T/}
}
Predrag Tanović. Some Questions Concerning Minimal Structures. Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 79 . doi: 10.2298/PIM0796079T
Cité par Sources :