Constructions of (2,n)-varieties of groupoids for n = 7, 8, 9
Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 111 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Given positive integer $n>2$, an algebra is said to be a $(2,n)$-algebra if any of its subalgebras generated by two distinct elements has $n$ elements. A variety is called a $(2,n)$-variety if every algebra in that variety is a $(2,n)$-algebra. There are known only $(2,3)$-, $(2,4)$- and $(2,5)$-varieties of groupoids, and there is no $(2,6)$-variety. We present here $(2,n)$-varieties of groupoids for $n=7,8,9$.
DOI : 10.2298/PIM0795111G
Classification : 03C05 20N05
Keywords: (2,n)-algebra, quasigroup, variety
@article{10_2298_PIM0795111G,
     author = {Lidija Gora\`einova-Ilieva and Smile Markovski},
     title = {Constructions of (2,n)-varieties of groupoids for n = 7, 8, 9},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {111 },
     publisher = {mathdoc},
     volume = {_N_S_81},
     number = {95},
     year = {2007},
     doi = {10.2298/PIM0795111G},
     zbl = {1234.20068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0795111G/}
}
TY  - JOUR
AU  - Lidija Goraèinova-Ilieva
AU  - Smile Markovski
TI  - Constructions of (2,n)-varieties of groupoids for n = 7, 8, 9
JO  - Publications de l'Institut Mathématique
PY  - 2007
SP  - 111 
VL  - _N_S_81
IS  - 95
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0795111G/
DO  - 10.2298/PIM0795111G
LA  - en
ID  - 10_2298_PIM0795111G
ER  - 
%0 Journal Article
%A Lidija Goraèinova-Ilieva
%A Smile Markovski
%T Constructions of (2,n)-varieties of groupoids for n = 7, 8, 9
%J Publications de l'Institut Mathématique
%D 2007
%P 111 
%V _N_S_81
%N 95
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0795111G/
%R 10.2298/PIM0795111G
%G en
%F 10_2298_PIM0795111G
Lidija Goraèinova-Ilieva; Smile Markovski. Constructions of (2,n)-varieties of groupoids for n = 7, 8, 9. Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 111 . doi : 10.2298/PIM0795111G. http://geodesic.mathdoc.fr/articles/10.2298/PIM0795111G/

Cité par Sources :