Canonical Biassociative Groupoids
Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 103 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the paper \emph{Free biassociative groupoids}, the variety of biassociative groupoids (i.e., groupoids that satisfy the condition: every subgroupoid generated by at most two elements is a subsemigroup) is considered and free objects are constructed using a chain of partial biassociative groupoids that satisfy certain properties. The obtained free objects in this variety are not canonical. By a \textit{canonical groupoid} in a variety $\mathcal{V}$ of groupoids we mean a free groupoid $(R,*)$ in $\mathcal{V}$ with a free basis $B$ such that the carrier $R$ is a subset of the absolutely free groupoid $(T_B,\cdot)$ with the free basis $B$ and $(tu\in R\;\Rightarrow\;t,u\in R\,\,\\,\,t*u=tu)$. In the present paper, a canonical description of free objects in the variety of biassociative groupoids is obtained.
DOI : 10.2298/PIM0795103J
Classification : 08B20 03C05
Keywords: Groupoid, subgroupoid generated by two elements, subsemigroup, free groupoid, canonical groupoid
@article{10_2298_PIM0795103J,
     author = {Biljana Janeva and Sne\v{z}ana Ili\'c and Vesna Celakoska-Jordanova},
     title = {Canonical {Biassociative} {Groupoids}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {103 },
     publisher = {mathdoc},
     volume = {_N_S_81},
     number = {95},
     year = {2007},
     doi = {10.2298/PIM0795103J},
     zbl = {1247.20071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/}
}
TY  - JOUR
AU  - Biljana Janeva
AU  - Snežana Ilić
AU  - Vesna Celakoska-Jordanova
TI  - Canonical Biassociative Groupoids
JO  - Publications de l'Institut Mathématique
PY  - 2007
SP  - 103 
VL  - _N_S_81
IS  - 95
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/
DO  - 10.2298/PIM0795103J
LA  - en
ID  - 10_2298_PIM0795103J
ER  - 
%0 Journal Article
%A Biljana Janeva
%A Snežana Ilić
%A Vesna Celakoska-Jordanova
%T Canonical Biassociative Groupoids
%J Publications de l'Institut Mathématique
%D 2007
%P 103 
%V _N_S_81
%N 95
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/
%R 10.2298/PIM0795103J
%G en
%F 10_2298_PIM0795103J
Biljana Janeva; Snežana Ilić; Vesna Celakoska-Jordanova. Canonical Biassociative Groupoids. Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 103 . doi : 10.2298/PIM0795103J. http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/

Cité par Sources :