Canonical Biassociative Groupoids
Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 103
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the paper \emph{Free biassociative groupoids}, the
variety of biassociative groupoids (i.e., groupoids that satisfy
the condition: every subgroupoid generated by at most two elements
is a subsemigroup) is considered and free objects are constructed
using a chain of partial biassociative groupoids that satisfy
certain properties. The obtained free objects in this variety are
not canonical. By a \textit{canonical groupoid} in a variety
$\mathcal{V}$ of groupoids we mean a free groupoid $(R,*)$ in
$\mathcal{V}$ with a free basis $B$ such that the carrier $R$ is a
subset of the absolutely free groupoid $(T_B,\cdot)$ with the
free basis $B$ and $(tu\in R\;\Rightarrow\;t,u\in R\,\,\\,\,t*u=tu)$.
In the present paper, a canonical description of free
objects in the variety of biassociative groupoids is obtained.
DOI :
10.2298/PIM0795103J
Classification :
08B20 03C05
Keywords: Groupoid, subgroupoid generated by two elements, subsemigroup, free groupoid, canonical groupoid
Keywords: Groupoid, subgroupoid generated by two elements, subsemigroup, free groupoid, canonical groupoid
@article{10_2298_PIM0795103J,
author = {Biljana Janeva and Sne\v{z}ana Ili\'c and Vesna Celakoska-Jordanova},
title = {Canonical {Biassociative} {Groupoids}},
journal = {Publications de l'Institut Math\'ematique},
pages = {103 },
year = {2007},
volume = {_N_S_81},
number = {95},
doi = {10.2298/PIM0795103J},
zbl = {1247.20071},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/}
}
TY - JOUR AU - Biljana Janeva AU - Snežana Ilić AU - Vesna Celakoska-Jordanova TI - Canonical Biassociative Groupoids JO - Publications de l'Institut Mathématique PY - 2007 SP - 103 VL - _N_S_81 IS - 95 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/ DO - 10.2298/PIM0795103J LA - en ID - 10_2298_PIM0795103J ER -
%0 Journal Article %A Biljana Janeva %A Snežana Ilić %A Vesna Celakoska-Jordanova %T Canonical Biassociative Groupoids %J Publications de l'Institut Mathématique %D 2007 %P 103 %V _N_S_81 %N 95 %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/ %R 10.2298/PIM0795103J %G en %F 10_2298_PIM0795103J
Biljana Janeva; Snežana Ilić; Vesna Celakoska-Jordanova. Canonical Biassociative Groupoids. Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 103 . doi: 10.2298/PIM0795103J
Cité par Sources :