Canonical Biassociative Groupoids
Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 103

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the paper \emph{Free biassociative groupoids}, the variety of biassociative groupoids (i.e., groupoids that satisfy the condition: every subgroupoid generated by at most two elements is a subsemigroup) is considered and free objects are constructed using a chain of partial biassociative groupoids that satisfy certain properties. The obtained free objects in this variety are not canonical. By a \textit{canonical groupoid} in a variety $\mathcal{V}$ of groupoids we mean a free groupoid $(R,*)$ in $\mathcal{V}$ with a free basis $B$ such that the carrier $R$ is a subset of the absolutely free groupoid $(T_B,\cdot)$ with the free basis $B$ and $(tu\in R\;\Rightarrow\;t,u\in R\,\,\\,\,t*u=tu)$. In the present paper, a canonical description of free objects in the variety of biassociative groupoids is obtained.
DOI : 10.2298/PIM0795103J
Classification : 08B20 03C05
Keywords: Groupoid, subgroupoid generated by two elements, subsemigroup, free groupoid, canonical groupoid
@article{10_2298_PIM0795103J,
     author = {Biljana Janeva and Sne\v{z}ana Ili\'c and Vesna Celakoska-Jordanova},
     title = {Canonical {Biassociative} {Groupoids}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {103 },
     publisher = {mathdoc},
     volume = {_N_S_81},
     number = {95},
     year = {2007},
     doi = {10.2298/PIM0795103J},
     zbl = {1247.20071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/}
}
TY  - JOUR
AU  - Biljana Janeva
AU  - Snežana Ilić
AU  - Vesna Celakoska-Jordanova
TI  - Canonical Biassociative Groupoids
JO  - Publications de l'Institut Mathématique
PY  - 2007
SP  - 103 
VL  - _N_S_81
IS  - 95
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/
DO  - 10.2298/PIM0795103J
LA  - en
ID  - 10_2298_PIM0795103J
ER  - 
%0 Journal Article
%A Biljana Janeva
%A Snežana Ilić
%A Vesna Celakoska-Jordanova
%T Canonical Biassociative Groupoids
%J Publications de l'Institut Mathématique
%D 2007
%P 103 
%V _N_S_81
%N 95
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/
%R 10.2298/PIM0795103J
%G en
%F 10_2298_PIM0795103J
Biljana Janeva; Snežana Ilić; Vesna Celakoska-Jordanova. Canonical Biassociative Groupoids. Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 103 . doi: 10.2298/PIM0795103J

Cité par Sources :