An Attempt at Frankl's Conjecture
Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 29
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In 1979 Frankl conjectured that in a finite union-closed family
$\F$ of finite sets, $\F\neq\{\emptyset\}$ there has to be
an element that belongs to at least half of the sets in $\F$.
We prove this when $|\bigcup{\mathcal F}|\leq 10$.
DOI :
10.2298/PIM0795029M
Classification :
05D05 05A05, 04A20
Keywords: Frankl's conjecture, union-closed sets conjecture
Keywords: Frankl's conjecture, union-closed sets conjecture
@article{10_2298_PIM0795029M,
author = {Petar Markovi\'c},
title = {An {Attempt} at {Frankl's} {Conjecture}},
journal = {Publications de l'Institut Math\'ematique},
pages = {29 },
publisher = {mathdoc},
volume = {_N_S_81},
number = {95},
year = {2007},
doi = {10.2298/PIM0795029M},
zbl = {1246.05004},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0795029M/}
}
Petar Marković. An Attempt at Frankl's Conjecture. Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 29 . doi: 10.2298/PIM0795029M
Cité par Sources :