An Equation With Left and Right Fractional Derivatives
Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 259
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider an equation with left and right fractional
derivatives and with the boundary condition $y(0)=\lim\limits_{x\to 0^+}y(x)=0$,
$y(b)=\lim\limits_{x\to b^-}y(x)=0$ in the space $\mathcal{L}^1(0, b)$ and in the
subspace of tempered distributions. The asymptotic behavior of
solutions in the end points $0$ and $b$ have been specially
analyzed by using Karamata's regularly varying functions.
DOI :
10.2298/PIM0694259S
Classification :
26A33 26A12
Keywords: Right and left Riemann--Liuville fractional derivative, Fractional differential equation, Regulary varying functions
Keywords: Right and left Riemann--Liuville fractional derivative, Fractional differential equation, Regulary varying functions
@article{10_2298_PIM0694259S,
author = {B. Stankovi\'c},
title = {An {Equation} {With} {Left} and {Right} {Fractional} {Derivatives}},
journal = {Publications de l'Institut Math\'ematique},
pages = {259 },
year = {2006},
volume = {_N_S_80},
number = {94},
doi = {10.2298/PIM0694259S},
zbl = {1246.26008},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0694259S/}
}
B. Stanković. An Equation With Left and Right Fractional Derivatives. Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 259 . doi: 10.2298/PIM0694259S
Cité par Sources :