On Regularly Varying Moments for Power Series Distributions
Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 253
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For the power series distribution, generated by an entire function
of finite order, we obtain the asymptotic behavior of its regularly varying moments.
Namely, we prove that
$E_wX^\alpha\ell(X)\sim(E_wX)^\alpha\ell(E_wX)$, $\alpha>0$ ($w\to\infty$),
where $\ell(\cdot)$ is an arbitrary slowly varying function.
DOI :
10.2298/PIM0694253S
Classification :
60E05 30D15
Keywords: regular variation, moments, power series distributions
Keywords: regular variation, moments, power series distributions
@article{10_2298_PIM0694253S,
author = {S. Simi\'c},
title = {On {Regularly} {Varying} {Moments} for {Power} {Series} {Distributions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {253 },
publisher = {mathdoc},
volume = {_N_S_80},
number = {94},
year = {2006},
doi = {10.2298/PIM0694253S},
zbl = {1164.60317},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0694253S/}
}
TY - JOUR AU - S. Simić TI - On Regularly Varying Moments for Power Series Distributions JO - Publications de l'Institut Mathématique PY - 2006 SP - 253 VL - _N_S_80 IS - 94 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0694253S/ DO - 10.2298/PIM0694253S LA - en ID - 10_2298_PIM0694253S ER -
S. Simić. On Regularly Varying Moments for Power Series Distributions. Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 253 . doi: 10.2298/PIM0694253S
Cité par Sources :