On Regularly Varying Moments for Power Series Distributions
Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 253 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

For the power series distribution, generated by an entire function of finite order, we obtain the asymptotic behavior of its regularly varying moments. Namely, we prove that $E_wX^\alpha\ell(X)\sim(E_wX)^\alpha\ell(E_wX)$, $\alpha>0$ ($w\to\infty$), where $\ell(\cdot)$ is an arbitrary slowly varying function.
DOI : 10.2298/PIM0694253S
Classification : 60E05 30D15
Keywords: regular variation, moments, power series distributions
@article{10_2298_PIM0694253S,
     author = {S. Simi\'c},
     title = {On {Regularly} {Varying} {Moments} for {Power} {Series} {Distributions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {253 },
     year = {2006},
     volume = {_N_S_80},
     number = {94},
     doi = {10.2298/PIM0694253S},
     zbl = {1164.60317},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0694253S/}
}
TY  - JOUR
AU  - S. Simić
TI  - On Regularly Varying Moments for Power Series Distributions
JO  - Publications de l'Institut Mathématique
PY  - 2006
SP  - 253 
VL  - _N_S_80
IS  - 94
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0694253S/
DO  - 10.2298/PIM0694253S
LA  - en
ID  - 10_2298_PIM0694253S
ER  - 
%0 Journal Article
%A S. Simić
%T On Regularly Varying Moments for Power Series Distributions
%J Publications de l'Institut Mathématique
%D 2006
%P 253 
%V _N_S_80
%N 94
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0694253S/
%R 10.2298/PIM0694253S
%G en
%F 10_2298_PIM0694253S
S. Simić. On Regularly Varying Moments for Power Series Distributions. Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 253 . doi: 10.2298/PIM0694253S

Cité par Sources :