Variants of Karamata's Iteration Theorem
Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 241
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Karamata's Iteration Theorem is used to refine the asymptotic
behavior of iterates of a function, under a more restrictive
assumption than Karamata's, but still involving regular variation.
A second result gives a necessary and sufficient integral
condition for convergence of a series of iterates. Historical
background to the idea of regularly varying sequence precedes a
short concluding section on attribution of a probabilistic result.
DOI :
10.2298/PIM0694241S
Classification :
26A12 40A05 40-03 01A55 01A60
Keywords: iterates, series, convergence, regularly varying sequence, Cauchy integral test, De Morgan, Buniakovsky, domain of attraction, Gnedenko
Keywords: iterates, series, convergence, regularly varying sequence, Cauchy integral test, De Morgan, Buniakovsky, domain of attraction, Gnedenko
@article{10_2298_PIM0694241S,
author = {Eugene Seneta},
title = {Variants of {Karamata's} {Iteration} {Theorem}},
journal = {Publications de l'Institut Math\'ematique},
pages = {241 },
year = {2006},
volume = {_N_S_80},
number = {94},
doi = {10.2298/PIM0694241S},
zbl = {1246.26004},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0694241S/}
}
Eugene Seneta. Variants of Karamata's Iteration Theorem. Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 241 . doi: 10.2298/PIM0694241S
Cité par Sources :