Variants of Karamata's Iteration Theorem
Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 241
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Karamata's Iteration Theorem is used to refine the asymptotic
behavior of iterates of a function, under a more restrictive
assumption than Karamata's, but still involving regular variation.
A second result gives a necessary and sufficient integral
condition for convergence of a series of iterates. Historical
background to the idea of regularly varying sequence precedes a
short concluding section on attribution of a probabilistic result.
DOI :
10.2298/PIM0694241S
Classification :
26A12 40A05 40-03 01A55 01A60
Keywords: iterates, series, convergence, regularly varying sequence, Cauchy integral test, De Morgan, Buniakovsky, domain of attraction, Gnedenko
Keywords: iterates, series, convergence, regularly varying sequence, Cauchy integral test, De Morgan, Buniakovsky, domain of attraction, Gnedenko
@article{10_2298_PIM0694241S,
author = {Eugene Seneta},
title = {Variants of {Karamata's} {Iteration} {Theorem}},
journal = {Publications de l'Institut Math\'ematique},
pages = {241 },
publisher = {mathdoc},
volume = {_N_S_80},
number = {94},
year = {2006},
doi = {10.2298/PIM0694241S},
zbl = {1246.26004},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0694241S/}
}
Eugene Seneta. Variants of Karamata's Iteration Theorem. Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 241 . doi: 10.2298/PIM0694241S
Cité par Sources :