Limit Distributions for the Ratio of the Random sum of Squares to the Square of the Random sum With Applications to Risk Measures
Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 219 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\{X_1,X_2,\ldots\}$ be a sequence of independent and identically distributed positive random variables of Pareto-type and let $\{N(t);\,t\geq 0\}$ be a counting process independent of the $X_i$'s. For any fixed $t\geq 0$, define: $ T_{N(t)}:=\frac{X_1^2+X_2^2+\cdots+X_{N(t)}^2}{(X_1+X_2+\cdots+X_{N(t)})^2} $ if $N(t)\geq 1$ and $T_{N(t)}:=0$ otherwise. We derive limits in distribution for $T_{N(t)}$ under some convergence conditions on the counting process. This is even achieved when both the numerator and the denominator defining $T_{N(t)}$ exhibit an erratic behavior ($\mathbb{E}X_1=\infty$) or when only the numerator has an erratic behavior ($\mathbb{E}X_1\infty$ and $\mathbb{E}X_1^2=\infty$). Armed with these results, we obtain asymptotic properties of two popular risk measures, namely the sample coefficient of variation and the sample dispersion.
DOI : 10.2298/PIM0694219L
Classification : 60F05 91B30
Keywords: Counting process, Domain of attraction of a stable distribution, Functions of regular variation, Pareto-type distribution, Sample coefficient of variation, Sample dispersion, Weak convergence
@article{10_2298_PIM0694219L,
     author = {Sophie A. Ladoucette and Jef J. Teugels},
     title = {Limit {Distributions} for the {Ratio} of the {Random} sum of {Squares} to the {Square} of the {Random} sum {With} {Applications} to {Risk} {Measures}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {219 },
     publisher = {mathdoc},
     volume = {_N_S_80},
     number = {94},
     year = {2006},
     doi = {10.2298/PIM0694219L},
     zbl = {1164.60328},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0694219L/}
}
TY  - JOUR
AU  - Sophie A. Ladoucette
AU  - Jef J. Teugels
TI  - Limit Distributions for the Ratio of the Random sum of Squares to the Square of the Random sum With Applications to Risk Measures
JO  - Publications de l'Institut Mathématique
PY  - 2006
SP  - 219 
VL  - _N_S_80
IS  - 94
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0694219L/
DO  - 10.2298/PIM0694219L
LA  - en
ID  - 10_2298_PIM0694219L
ER  - 
%0 Journal Article
%A Sophie A. Ladoucette
%A Jef J. Teugels
%T Limit Distributions for the Ratio of the Random sum of Squares to the Square of the Random sum With Applications to Risk Measures
%J Publications de l'Institut Mathématique
%D 2006
%P 219 
%V _N_S_80
%N 94
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0694219L/
%R 10.2298/PIM0694219L
%G en
%F 10_2298_PIM0694219L
Sophie A. Ladoucette; Jef J. Teugels. Limit Distributions for the Ratio of the Random sum of Squares to the Square of the Random sum With Applications to Risk Measures. Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 219 . doi : 10.2298/PIM0694219L. http://geodesic.mathdoc.fr/articles/10.2298/PIM0694219L/

Cité par Sources :