Limit Distributions for the Ratio of the Random sum of Squares to the Square of the Random sum With Applications to Risk Measures
Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 219
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\{X_1,X_2,\ldots\}$ be a sequence of independent and
identically distributed positive random variables of Pareto-type
and let $\{N(t);\,t\geq 0\}$ be a counting process independent of
the $X_i$'s. For any fixed $t\geq 0$, define:
$
T_{N(t)}:=\frac{X_1^2+X_2^2+\cdots+X_{N(t)}^2}{(X_1+X_2+\cdots+X_{N(t)})^2}
$
if $N(t)\geq 1$ and $T_{N(t)}:=0$ otherwise. We derive limits in
distribution for $T_{N(t)}$ under some convergence conditions on
the counting process. This is even achieved when both the
numerator and the denominator defining $T_{N(t)}$ exhibit an
erratic behavior ($\mathbb{E}X_1=\infty$) or when only the
numerator has an erratic behavior ($\mathbb{E}X_1\infty$ and
$\mathbb{E}X_1^2=\infty$). Armed with these results, we obtain
asymptotic properties of two popular risk measures, namely the
sample coefficient of variation and the sample dispersion.
DOI :
10.2298/PIM0694219L
Classification :
60F05 91B30
Keywords: Counting process, Domain of attraction of a stable distribution, Functions of regular variation, Pareto-type distribution, Sample coefficient of variation, Sample dispersion, Weak convergence
Keywords: Counting process, Domain of attraction of a stable distribution, Functions of regular variation, Pareto-type distribution, Sample coefficient of variation, Sample dispersion, Weak convergence
@article{10_2298_PIM0694219L,
author = {Sophie A. Ladoucette and Jef J. Teugels},
title = {Limit {Distributions} for the {Ratio} of the {Random} sum of {Squares} to the {Square} of the {Random} sum {With} {Applications} to {Risk} {Measures}},
journal = {Publications de l'Institut Math\'ematique},
pages = {219 },
publisher = {mathdoc},
volume = {_N_S_80},
number = {94},
year = {2006},
doi = {10.2298/PIM0694219L},
zbl = {1164.60328},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0694219L/}
}
TY - JOUR AU - Sophie A. Ladoucette AU - Jef J. Teugels TI - Limit Distributions for the Ratio of the Random sum of Squares to the Square of the Random sum With Applications to Risk Measures JO - Publications de l'Institut Mathématique PY - 2006 SP - 219 VL - _N_S_80 IS - 94 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0694219L/ DO - 10.2298/PIM0694219L LA - en ID - 10_2298_PIM0694219L ER -
%0 Journal Article %A Sophie A. Ladoucette %A Jef J. Teugels %T Limit Distributions for the Ratio of the Random sum of Squares to the Square of the Random sum With Applications to Risk Measures %J Publications de l'Institut Mathématique %D 2006 %P 219 %V _N_S_80 %N 94 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0694219L/ %R 10.2298/PIM0694219L %G en %F 10_2298_PIM0694219L
Sophie A. Ladoucette; Jef J. Teugels. Limit Distributions for the Ratio of the Random sum of Squares to the Square of the Random sum With Applications to Risk Measures. Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 219 . doi: 10.2298/PIM0694219L
Cité par Sources :