Good Decomposition in the Class of Convex Functions of Higher Order
Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 157 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The problems investigated in this article are connected to the fact that the class of slowly varying functions is not closed with respect to the operation of subtraction. We study the class of functions $\mathcal{F}_{k-1}$, which are nonnegative and $i$-convex for $0\leq i
DOI : 10.2298/PIM0694157J
Classification : 26A12
@article{10_2298_PIM0694157J,
     author = {Slobodanka Jankovi\'c and Tatjana Ostrogorski},
     title = {Good {Decomposition} in the {Class} of {Convex} {Functions} of {Higher} {Order}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {157 },
     publisher = {mathdoc},
     volume = {_N_S_80},
     number = {94},
     year = {2006},
     doi = {10.2298/PIM0694157J},
     zbl = {1246.26003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0694157J/}
}
TY  - JOUR
AU  - Slobodanka Janković
AU  - Tatjana Ostrogorski
TI  - Good Decomposition in the Class of Convex Functions of Higher Order
JO  - Publications de l'Institut Mathématique
PY  - 2006
SP  - 157 
VL  - _N_S_80
IS  - 94
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0694157J/
DO  - 10.2298/PIM0694157J
LA  - en
ID  - 10_2298_PIM0694157J
ER  - 
%0 Journal Article
%A Slobodanka Janković
%A Tatjana Ostrogorski
%T Good Decomposition in the Class of Convex Functions of Higher Order
%J Publications de l'Institut Mathématique
%D 2006
%P 157 
%V _N_S_80
%N 94
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0694157J/
%R 10.2298/PIM0694157J
%G en
%F 10_2298_PIM0694157J
Slobodanka Janković; Tatjana Ostrogorski. Good Decomposition in the Class of Convex Functions of Higher Order. Publications de l'Institut Mathématique, _N_S_80 (2006) no. 94, p. 157 . doi : 10.2298/PIM0694157J. http://geodesic.mathdoc.fr/articles/10.2298/PIM0694157J/

Cité par Sources :