Common Spectral Properties of Linear Operators A and B Such That ABA=A2 and BAB=B2
Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 109 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $A$ and $B$ be bounded linear operators on a Banach space such that $ABA=A^2$ and $BAB=B^2$. Then $A$ and $B$ have some spectral properties in common. This situation is studied in the present paper.
DOI : 10.2298/PIM0693109S
Classification : 47A10
Keywords: operator equation, spectrum
@article{10_2298_PIM0693109S,
     author = {Christoph Schmoeger},
     title = {Common {Spectral} {Properties} of {Linear} {Operators} {A} and {B} {Such} {That} {ABA=A\protect\textsuperscript{2}} and {BAB=B\protect\textsuperscript{2}}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {109 },
     publisher = {mathdoc},
     volume = {_N_S_79},
     number = {93},
     year = {2006},
     doi = {10.2298/PIM0693109S},
     zbl = {1122.47004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0693109S/}
}
TY  - JOUR
AU  - Christoph Schmoeger
TI  - Common Spectral Properties of Linear Operators A and B Such That ABA=A2 and BAB=B2
JO  - Publications de l'Institut Mathématique
PY  - 2006
SP  - 109 
VL  - _N_S_79
IS  - 93
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0693109S/
DO  - 10.2298/PIM0693109S
LA  - en
ID  - 10_2298_PIM0693109S
ER  - 
%0 Journal Article
%A Christoph Schmoeger
%T Common Spectral Properties of Linear Operators A and B Such That ABA=A2 and BAB=B2
%J Publications de l'Institut Mathématique
%D 2006
%P 109 
%V _N_S_79
%N 93
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0693109S/
%R 10.2298/PIM0693109S
%G en
%F 10_2298_PIM0693109S
Christoph Schmoeger. Common Spectral Properties of Linear Operators A and B Such That ABA=A2 and BAB=B2. Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 109 . doi : 10.2298/PIM0693109S. http://geodesic.mathdoc.fr/articles/10.2298/PIM0693109S/

Cité par Sources :