Gitterpunkte in Superkugeln
Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 37
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The number of weighted lattice points in a p-dimensional
centralsymmetric sphere can be represented by an infinite series over
Bessel functions. This is well known. In the present article this
result will be generalized to super spheres, which contain points with
Gaussian curvature zero at the boundary. In the representation of the
number of lattice points in these super spheres the Bessel functions
are replaced by convolution products over generalized Bessel functions.
These products can be developed into a series over modified generalized
Bessel functions. Then one is in the position to prove some new or
modified estimates for the number of lattice points inside super spheres.
DOI :
10.2298/PIM0693037K
Classification :
11P21
Keywords: lattice points, convex bodies, super spheres
Keywords: lattice points, convex bodies, super spheres
@article{10_2298_PIM0693037K,
author = {Ekkehard Kr\"atzel},
title = {Gitterpunkte in {Superkugeln}},
journal = {Publications de l'Institut Math\'ematique},
pages = {37 },
publisher = {mathdoc},
volume = {_N_S_79},
number = {93},
year = {2006},
doi = {10.2298/PIM0693037K},
zbl = {1164.11060},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0693037K/}
}
Ekkehard Krätzel. Gitterpunkte in Superkugeln. Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 37 . doi: 10.2298/PIM0693037K
Cité par Sources :