Gitterpunkte in Superkugeln
Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 37 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The number of weighted lattice points in a p-dimensional centralsymmetric sphere can be represented by an infinite series over Bessel functions. This is well known. In the present article this result will be generalized to super spheres, which contain points with Gaussian curvature zero at the boundary. In the representation of the number of lattice points in these super spheres the Bessel functions are replaced by convolution products over generalized Bessel functions. These products can be developed into a series over modified generalized Bessel functions. Then one is in the position to prove some new or modified estimates for the number of lattice points inside super spheres.
DOI : 10.2298/PIM0693037K
Classification : 11P21
Keywords: lattice points, convex bodies, super spheres
@article{10_2298_PIM0693037K,
     author = {Ekkehard Kr\"atzel},
     title = {Gitterpunkte in {Superkugeln}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {37 },
     publisher = {mathdoc},
     volume = {_N_S_79},
     number = {93},
     year = {2006},
     doi = {10.2298/PIM0693037K},
     zbl = {1164.11060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0693037K/}
}
TY  - JOUR
AU  - Ekkehard Krätzel
TI  - Gitterpunkte in Superkugeln
JO  - Publications de l'Institut Mathématique
PY  - 2006
SP  - 37 
VL  - _N_S_79
IS  - 93
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0693037K/
DO  - 10.2298/PIM0693037K
LA  - en
ID  - 10_2298_PIM0693037K
ER  - 
%0 Journal Article
%A Ekkehard Krätzel
%T Gitterpunkte in Superkugeln
%J Publications de l'Institut Mathématique
%D 2006
%P 37 
%V _N_S_79
%N 93
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0693037K/
%R 10.2298/PIM0693037K
%G en
%F 10_2298_PIM0693037K
Ekkehard Krätzel. Gitterpunkte in Superkugeln. Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 37 . doi : 10.2298/PIM0693037K. http://geodesic.mathdoc.fr/articles/10.2298/PIM0693037K/

Cité par Sources :