Some Trees Characterized by Eigenvalues and Angles
Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 19 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A vertex of a simple graph is called large if its degree is at least 3. It was shown recently that in the class of starlike trees, which have one large vertex, there are no pairs of cospectral trees. However, already in the classes of trees with two or three large vertices there exist pairs of cospectral trees. Thus, one needs to employ additional graph invariant in order to characterize such trees. Here we show that trees with two or three large vertices are characterized by their eigenvalues and angles.
DOI : 10.2298/PIM0693019S
Classification : 05C50
@article{10_2298_PIM0693019S,
     author = {Dragan Stevanovi\'c and Vladimir Brankov},
     title = {Some {Trees} {Characterized} by {Eigenvalues} and {Angles}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {19 },
     publisher = {mathdoc},
     volume = {_N_S_79},
     number = {93},
     year = {2006},
     doi = {10.2298/PIM0693019S},
     zbl = {1121.05075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0693019S/}
}
TY  - JOUR
AU  - Dragan Stevanović
AU  - Vladimir Brankov
TI  - Some Trees Characterized by Eigenvalues and Angles
JO  - Publications de l'Institut Mathématique
PY  - 2006
SP  - 19 
VL  - _N_S_79
IS  - 93
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0693019S/
DO  - 10.2298/PIM0693019S
LA  - en
ID  - 10_2298_PIM0693019S
ER  - 
%0 Journal Article
%A Dragan Stevanović
%A Vladimir Brankov
%T Some Trees Characterized by Eigenvalues and Angles
%J Publications de l'Institut Mathématique
%D 2006
%P 19 
%V _N_S_79
%N 93
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0693019S/
%R 10.2298/PIM0693019S
%G en
%F 10_2298_PIM0693019S
Dragan Stevanović; Vladimir Brankov. Some Trees Characterized by Eigenvalues and Angles. Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 19 . doi : 10.2298/PIM0693019S. http://geodesic.mathdoc.fr/articles/10.2298/PIM0693019S/

Cité par Sources :