Some Trees Characterized by Eigenvalues and Angles
Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 19
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A vertex of a simple graph is called large if its degree is at
least 3. It was shown recently that in the class of starlike
trees, which have one large vertex, there are no pairs of
cospectral trees. However, already in the classes of trees with
two or three large vertices there exist pairs of cospectral trees.
Thus, one needs to employ additional graph invariant in order to
characterize such trees. Here we show that trees with two or three
large vertices are characterized by their eigenvalues and angles.
@article{10_2298_PIM0693019S,
author = {Dragan Stevanovi\'c and Vladimir Brankov},
title = {Some {Trees} {Characterized} by {Eigenvalues} and {Angles}},
journal = {Publications de l'Institut Math\'ematique},
pages = {19 },
publisher = {mathdoc},
volume = {_N_S_79},
number = {93},
year = {2006},
doi = {10.2298/PIM0693019S},
zbl = {1121.05075},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0693019S/}
}
TY - JOUR AU - Dragan Stevanović AU - Vladimir Brankov TI - Some Trees Characterized by Eigenvalues and Angles JO - Publications de l'Institut Mathématique PY - 2006 SP - 19 VL - _N_S_79 IS - 93 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0693019S/ DO - 10.2298/PIM0693019S LA - en ID - 10_2298_PIM0693019S ER -
%0 Journal Article %A Dragan Stevanović %A Vladimir Brankov %T Some Trees Characterized by Eigenvalues and Angles %J Publications de l'Institut Mathématique %D 2006 %P 19 %V _N_S_79 %N 93 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0693019S/ %R 10.2298/PIM0693019S %G en %F 10_2298_PIM0693019S
Dragan Stevanović; Vladimir Brankov. Some Trees Characterized by Eigenvalues and Angles. Publications de l'Institut Mathématique, _N_S_79 (2006) no. 93, p. 19 . doi: 10.2298/PIM0693019S
Cité par Sources :