Kneser's Theorem for Weak Solutions of an Integral Equation With Weakly Singular Kernel
Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 87
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove that the set of all weak solutions of the Volterra integral
equation (1) is nonempty, compact and connected.
@article{10_2298_PIM0591087D,
author = {Aldona Dutkiewicz and Stanis{\l}aw Szufla},
title = {Kneser's {Theorem} for {Weak} {Solutions} of an {Integral} {Equation} {With} {Weakly} {Singular} {Kernel}},
journal = {Publications de l'Institut Math\'ematique},
pages = {87 },
year = {2005},
volume = {_N_S_77},
number = {91},
doi = {10.2298/PIM0591087D},
zbl = {1142.45308},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0591087D/}
}
TY - JOUR AU - Aldona Dutkiewicz AU - Stanisław Szufla TI - Kneser's Theorem for Weak Solutions of an Integral Equation With Weakly Singular Kernel JO - Publications de l'Institut Mathématique PY - 2005 SP - 87 VL - _N_S_77 IS - 91 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0591087D/ DO - 10.2298/PIM0591087D LA - en ID - 10_2298_PIM0591087D ER -
%0 Journal Article %A Aldona Dutkiewicz %A Stanisław Szufla %T Kneser's Theorem for Weak Solutions of an Integral Equation With Weakly Singular Kernel %J Publications de l'Institut Mathématique %D 2005 %P 87 %V _N_S_77 %N 91 %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0591087D/ %R 10.2298/PIM0591087D %G en %F 10_2298_PIM0591087D
Aldona Dutkiewicz; Stanisław Szufla. Kneser's Theorem for Weak Solutions of an Integral Equation With Weakly Singular Kernel. Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 87 . doi: 10.2298/PIM0591087D
Cité par Sources :