Kneser's Theorem for Weak Solutions of an Integral Equation With Weakly Singular Kernel
Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 87 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove that the set of all weak solutions of the Volterra integral equation (1) is nonempty, compact and connected.
DOI : 10.2298/PIM0591087D
Classification : 45N05
@article{10_2298_PIM0591087D,
     author = {Aldona Dutkiewicz and Stanis{\l}aw Szufla},
     title = {Kneser's {Theorem} for {Weak} {Solutions} of an {Integral} {Equation} {With} {Weakly} {Singular} {Kernel}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {87 },
     publisher = {mathdoc},
     volume = {_N_S_77},
     number = {91},
     year = {2005},
     doi = {10.2298/PIM0591087D},
     zbl = {1142.45308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0591087D/}
}
TY  - JOUR
AU  - Aldona Dutkiewicz
AU  - Stanisław Szufla
TI  - Kneser's Theorem for Weak Solutions of an Integral Equation With Weakly Singular Kernel
JO  - Publications de l'Institut Mathématique
PY  - 2005
SP  - 87 
VL  - _N_S_77
IS  - 91
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0591087D/
DO  - 10.2298/PIM0591087D
LA  - en
ID  - 10_2298_PIM0591087D
ER  - 
%0 Journal Article
%A Aldona Dutkiewicz
%A Stanisław Szufla
%T Kneser's Theorem for Weak Solutions of an Integral Equation With Weakly Singular Kernel
%J Publications de l'Institut Mathématique
%D 2005
%P 87 
%V _N_S_77
%N 91
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0591087D/
%R 10.2298/PIM0591087D
%G en
%F 10_2298_PIM0591087D
Aldona Dutkiewicz; Stanisław Szufla. Kneser's Theorem for Weak Solutions of an Integral Equation With Weakly Singular Kernel. Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 87 . doi : 10.2298/PIM0591087D. http://geodesic.mathdoc.fr/articles/10.2298/PIM0591087D/

Cité par Sources :