On the Distribution of M-tuples of B-numbers
Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 71
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the classical sense, the set $B$
consists of all integers which can be written as a sum of two
perfect squares. In other words, these are the values attained by
norms of integral ideals over the Gaussian field $\Qi(i)$. G. J.
Rieger (1965) and T. Cochrane. R. E. Dressler (1987) established
bounds for the number of pairs $(n,n+h)$, resp., triples
$(n,n+1,n+2)$ of $B$-numbers up to a large real parameter $x$. The
present article generalizes these investigations into two
directions: The result obtained deals with arbitrary $M$-tuples of
arithmetic progressions of positive integers, excluding the
trivial case that one of them is a constant multiple of one of the others.
Furthermore, the estimate applies to the case of an arbitrary
normal extension $K$ of the rational field instead of $\Qi(i)$.
DOI :
10.2298/PIM0591071N
Classification :
11P05 11N35
Keywords: $B$-numbers, Selberg sieve, norms of ideals in number fields
Keywords: $B$-numbers, Selberg sieve, norms of ideals in number fields
@article{10_2298_PIM0591071N,
author = {Werner Georg Nowak},
title = {On the {Distribution} of {M-tuples} of {B-numbers}},
journal = {Publications de l'Institut Math\'ematique},
pages = {71 },
publisher = {mathdoc},
volume = {_N_S_77},
number = {91},
year = {2005},
doi = {10.2298/PIM0591071N},
zbl = {1150.11036},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0591071N/}
}
TY - JOUR AU - Werner Georg Nowak TI - On the Distribution of M-tuples of B-numbers JO - Publications de l'Institut Mathématique PY - 2005 SP - 71 VL - _N_S_77 IS - 91 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0591071N/ DO - 10.2298/PIM0591071N LA - en ID - 10_2298_PIM0591071N ER -
Werner Georg Nowak. On the Distribution of M-tuples of B-numbers. Publications de l'Institut Mathématique, _N_S_77 (2005) no. 91, p. 71 . doi: 10.2298/PIM0591071N
Cité par Sources :