A General Strong Nyman--beurling Criterion for the Riemann Hypothesis
Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 117
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For each $f:[0,\infty)\to\mathbb C$ formally consider its
Müntz transform $g(x)=\sum_{n\geq 1}f(nx)-\frac1x\int_0^\infty f(t)dt$.
For certain $f$'s with both $f,g\in L_2(0,\infty)$ it is true that the
Riemann hypothesis holds if and only if $f$ is in the $L_2$ closure of
the vector space generated by the dilations $x\mapsto g(kx)$,
$k\in\mathbb N$. Such is the case for example when $f=\chi_{(0,1]}$
where the above statement reduces to the strong Nyman criterion already
established by the author. In this note we show that the necessity
implication holds for any continuously differentiable function $f$
vanishing at infinity and satisfying $\int_0^\infty t|f'(t)|\,dt\infty$.
If in addition $f$ is of compact support,
then the sufficiency implication also holds true.
It would be convenient to remove this compactness condition.
DOI :
10.2298/PIM0578117B
Classification :
11M26
Keywords: Riemann zeta-function, Riemann hypothesis, strong Nyman--Beurling theorem, Müntz's formula
Keywords: Riemann zeta-function, Riemann hypothesis, strong Nyman--Beurling theorem, Müntz's formula
@article{10_2298_PIM0578117B,
author = {Luis B\'aez-Duarte},
title = {A {General} {Strong} {Nyman--beurling} {Criterion} for the {Riemann} {Hypothesis}},
journal = {Publications de l'Institut Math\'ematique},
pages = {117 },
publisher = {mathdoc},
volume = {_N_S_78},
number = {92},
year = {2005},
doi = {10.2298/PIM0578117B},
zbl = {1119.11048},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0578117B/}
}
TY - JOUR AU - Luis Báez-Duarte TI - A General Strong Nyman--beurling Criterion for the Riemann Hypothesis JO - Publications de l'Institut Mathématique PY - 2005 SP - 117 VL - _N_S_78 IS - 92 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0578117B/ DO - 10.2298/PIM0578117B LA - en ID - 10_2298_PIM0578117B ER -
%0 Journal Article %A Luis Báez-Duarte %T A General Strong Nyman--beurling Criterion for the Riemann Hypothesis %J Publications de l'Institut Mathématique %D 2005 %P 117 %V _N_S_78 %N 92 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0578117B/ %R 10.2298/PIM0578117B %G en %F 10_2298_PIM0578117B
Luis Báez-Duarte. A General Strong Nyman--beurling Criterion for the Riemann Hypothesis. Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 117 . doi: 10.2298/PIM0578117B
Cité par Sources :