A General Strong Nyman--beurling Criterion for the Riemann Hypothesis
Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 117 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For each $f:[0,\infty)\to\mathbb C$ formally consider its Müntz transform $g(x)=\sum_{n\geq 1}f(nx)-\frac1x\int_0^\infty f(t)dt$. For certain $f$'s with both $f,g\in L_2(0,\infty)$ it is true that the Riemann hypothesis holds if and only if $f$ is in the $L_2$ closure of the vector space generated by the dilations $x\mapsto g(kx)$, $k\in\mathbb N$. Such is the case for example when $f=\chi_{(0,1]}$ where the above statement reduces to the strong Nyman criterion already established by the author. In this note we show that the necessity implication holds for any continuously differentiable function $f$ vanishing at infinity and satisfying $\int_0^\infty t|f'(t)|\,dt\infty$. If in addition $f$ is of compact support, then the sufficiency implication also holds true. It would be convenient to remove this compactness condition.
DOI : 10.2298/PIM0578117B
Classification : 11M26
Keywords: Riemann zeta-function, Riemann hypothesis, strong Nyman--Beurling theorem, Müntz's formula
@article{10_2298_PIM0578117B,
     author = {Luis B\'aez-Duarte},
     title = {A {General} {Strong} {Nyman--beurling} {Criterion} for the {Riemann} {Hypothesis}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {117 },
     publisher = {mathdoc},
     volume = {_N_S_78},
     number = {92},
     year = {2005},
     doi = {10.2298/PIM0578117B},
     zbl = {1119.11048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0578117B/}
}
TY  - JOUR
AU  - Luis Báez-Duarte
TI  - A General Strong Nyman--beurling Criterion for the Riemann Hypothesis
JO  - Publications de l'Institut Mathématique
PY  - 2005
SP  - 117 
VL  - _N_S_78
IS  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0578117B/
DO  - 10.2298/PIM0578117B
LA  - en
ID  - 10_2298_PIM0578117B
ER  - 
%0 Journal Article
%A Luis Báez-Duarte
%T A General Strong Nyman--beurling Criterion for the Riemann Hypothesis
%J Publications de l'Institut Mathématique
%D 2005
%P 117 
%V _N_S_78
%N 92
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0578117B/
%R 10.2298/PIM0578117B
%G en
%F 10_2298_PIM0578117B
Luis Báez-Duarte. A General Strong Nyman--beurling Criterion for the Riemann Hypothesis. Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 117 . doi : 10.2298/PIM0578117B. http://geodesic.mathdoc.fr/articles/10.2298/PIM0578117B/

Cité par Sources :