A Characterization of Absolutely Monotonic (Δ) Functions of a Fixed Order
Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 93 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Absolutely monotonic ($\Delta$) function of order $n$ are characterized in terms of $n$-dimensional totally increasing functions. Applications to $n$-copulas are presented.
DOI : 10.2298/PIM0578093M
Classification : 26A48 26A51 62H10
Keywords: Absolutely monotonic function, totally increasing function, multivariate distribution, copulas
@article{10_2298_PIM0578093M,
     author = {Patricia Mariela Morillas},
     title = {A {Characterization} of {Absolutely} {Monotonic} {(\ensuremath{\Delta})} {Functions} of a {Fixed} {Order}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {93 },
     publisher = {mathdoc},
     volume = {_N_S_78},
     number = {92},
     year = {2005},
     doi = {10.2298/PIM0578093M},
     zbl = {1119.26013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0578093M/}
}
TY  - JOUR
AU  - Patricia Mariela Morillas
TI  - A Characterization of Absolutely Monotonic (Δ) Functions of a Fixed Order
JO  - Publications de l'Institut Mathématique
PY  - 2005
SP  - 93 
VL  - _N_S_78
IS  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0578093M/
DO  - 10.2298/PIM0578093M
LA  - en
ID  - 10_2298_PIM0578093M
ER  - 
%0 Journal Article
%A Patricia Mariela Morillas
%T A Characterization of Absolutely Monotonic (Δ) Functions of a Fixed Order
%J Publications de l'Institut Mathématique
%D 2005
%P 93 
%V _N_S_78
%N 92
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0578093M/
%R 10.2298/PIM0578093M
%G en
%F 10_2298_PIM0578093M
Patricia Mariela Morillas. A Characterization of Absolutely Monotonic (Δ) Functions of a Fixed Order. Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 93 . doi : 10.2298/PIM0578093M. http://geodesic.mathdoc.fr/articles/10.2298/PIM0578093M/

Cité par Sources :