Completeness Theorem for a Logic With Imprecise and Conditional Probabilities
Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 35
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present a propositional probability logic which allows
making formulas that speak about imprecise and conditional
probabilities. A class of Kripke-like probabilistic models is defined
to give semantics to probabilistic formulas. Every possible world of
such a model is equipped with a probability space. The corresponding
probabilities may have nonstandard values. The proposition
``the probability is close to $r$" means that there is an infinitesimal
$\epsilon$, such that the probability is equal to $r-\epsilon$
(or $r+\epsilon$). We provide an infinitary axiomatization and prove the
corresponding extended completeness theorem.
DOI :
10.2298/PIM0578035O
Classification :
03B70 03B45 68T37
Keywords: conditional probability logic, nonstandard values, Hardy field, completeness
Keywords: conditional probability logic, nonstandard values, Hardy field, completeness
@article{10_2298_PIM0578035O,
author = {Zoran Ognjanovi\'c and Zoran Markovi\'c and Miodrag Ra\v{s}kovi\'c},
title = {Completeness {Theorem} for a {Logic} {With} {Imprecise} and {Conditional} {Probabilities}},
journal = {Publications de l'Institut Math\'ematique},
pages = {35 },
year = {2005},
volume = {_N_S_78},
number = {92},
doi = {10.2298/PIM0578035O},
zbl = {1144.03019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0578035O/}
}
TY - JOUR AU - Zoran Ognjanović AU - Zoran Marković AU - Miodrag Rašković TI - Completeness Theorem for a Logic With Imprecise and Conditional Probabilities JO - Publications de l'Institut Mathématique PY - 2005 SP - 35 VL - _N_S_78 IS - 92 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0578035O/ DO - 10.2298/PIM0578035O LA - en ID - 10_2298_PIM0578035O ER -
%0 Journal Article %A Zoran Ognjanović %A Zoran Marković %A Miodrag Rašković %T Completeness Theorem for a Logic With Imprecise and Conditional Probabilities %J Publications de l'Institut Mathématique %D 2005 %P 35 %V _N_S_78 %N 92 %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0578035O/ %R 10.2298/PIM0578035O %G en %F 10_2298_PIM0578035O
Zoran Ognjanović; Zoran Marković; Miodrag Rašković. Completeness Theorem for a Logic With Imprecise and Conditional Probabilities. Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 35 . doi: 10.2298/PIM0578035O
Cité par Sources :