On a Class of Nonconvex Problems Where all Local Minima are Global
Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 101 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We characterize a class of optimization problems having convex objective function and nonconvex feasible region with the property that all local minima are global.
DOI : 10.2298/PIM0476101L
Classification : 26B25 32F17 52A30
Keywords: nonconvex problems, local minima
@article{10_2298_PIM0476101L,
     author = {Leo Liberti},
     title = {On a {Class} of {Nonconvex} {Problems} {Where} all {Local} {Minima} are {Global}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {101 },
     publisher = {mathdoc},
     volume = {_N_S_76},
     number = {90},
     year = {2004},
     doi = {10.2298/PIM0476101L},
     zbl = {1220.90097},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0476101L/}
}
TY  - JOUR
AU  - Leo Liberti
TI  - On a Class of Nonconvex Problems Where all Local Minima are Global
JO  - Publications de l'Institut Mathématique
PY  - 2004
SP  - 101 
VL  - _N_S_76
IS  - 90
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0476101L/
DO  - 10.2298/PIM0476101L
LA  - en
ID  - 10_2298_PIM0476101L
ER  - 
%0 Journal Article
%A Leo Liberti
%T On a Class of Nonconvex Problems Where all Local Minima are Global
%J Publications de l'Institut Mathématique
%D 2004
%P 101 
%V _N_S_76
%N 90
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0476101L/
%R 10.2298/PIM0476101L
%G en
%F 10_2298_PIM0476101L
Leo Liberti. On a Class of Nonconvex Problems Where all Local Minima are Global. Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 101 . doi : 10.2298/PIM0476101L. http://geodesic.mathdoc.fr/articles/10.2298/PIM0476101L/

Cité par Sources :