On a Class of Nonconvex Problems Where all Local Minima are Global
Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 101
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We characterize a class of optimization problems having
convex objective function and nonconvex feasible region with the
property that all local minima are global.
DOI :
10.2298/PIM0476101L
Classification :
26B25 32F17 52A30
Keywords: nonconvex problems, local minima
Keywords: nonconvex problems, local minima
@article{10_2298_PIM0476101L,
author = {Leo Liberti},
title = {On a {Class} of {Nonconvex} {Problems} {Where} all {Local} {Minima} are {Global}},
journal = {Publications de l'Institut Math\'ematique},
pages = {101 },
publisher = {mathdoc},
volume = {_N_S_76},
number = {90},
year = {2004},
doi = {10.2298/PIM0476101L},
zbl = {1220.90097},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0476101L/}
}
TY - JOUR AU - Leo Liberti TI - On a Class of Nonconvex Problems Where all Local Minima are Global JO - Publications de l'Institut Mathématique PY - 2004 SP - 101 VL - _N_S_76 IS - 90 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0476101L/ DO - 10.2298/PIM0476101L LA - en ID - 10_2298_PIM0476101L ER -
%0 Journal Article %A Leo Liberti %T On a Class of Nonconvex Problems Where all Local Minima are Global %J Publications de l'Institut Mathématique %D 2004 %P 101 %V _N_S_76 %N 90 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0476101L/ %R 10.2298/PIM0476101L %G en %F 10_2298_PIM0476101L
Leo Liberti. On a Class of Nonconvex Problems Where all Local Minima are Global. Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 101 . doi: 10.2298/PIM0476101L
Cité par Sources :