Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
@article{10_2298_PIM0476101L, author = {Leo Liberti}, title = {On a {Class} of {Nonconvex} {Problems} {Where} all {Local} {Minima} are {Global}}, journal = {Publications de l'Institut Math\'ematique}, pages = {101 }, publisher = {mathdoc}, volume = {_N_S_76}, number = {90}, year = {2004}, doi = {10.2298/PIM0476101L}, zbl = {1220.90097}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0476101L/} }
TY - JOUR AU - Leo Liberti TI - On a Class of Nonconvex Problems Where all Local Minima are Global JO - Publications de l'Institut Mathématique PY - 2004 SP - 101 VL - _N_S_76 IS - 90 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0476101L/ DO - 10.2298/PIM0476101L LA - en ID - 10_2298_PIM0476101L ER -
%0 Journal Article %A Leo Liberti %T On a Class of Nonconvex Problems Where all Local Minima are Global %J Publications de l'Institut Mathématique %D 2004 %P 101 %V _N_S_76 %N 90 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0476101L/ %R 10.2298/PIM0476101L %G en %F 10_2298_PIM0476101L
Leo Liberti. On a Class of Nonconvex Problems Where all Local Minima are Global. Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 101 . doi : 10.2298/PIM0476101L. http://geodesic.mathdoc.fr/articles/10.2298/PIM0476101L/
Cité par Sources :