An Asymptotic Formula for a sum Involving Zeros of the Riemann Zeta-function
Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 81 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

E. Landau gave an interesting asymptotic formula for a sum involving zeros of the Riemann zeta-function. We give an asymptotic formula which can be regarded as a smoothed version of Landau's formula.
DOI : 10.2298/PIM0476081K
Classification : 11M36
Keywords: Riemann zeta-function, non-trivial zeros, asymptotic formula
@article{10_2298_PIM0476081K,
     author = {Yuichi Kamiya and Masatoshi Suzuki},
     title = {An {Asymptotic} {Formula} for a sum {Involving} {Zeros} of the {Riemann} {Zeta-function}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {81 },
     publisher = {mathdoc},
     volume = {_N_S_76},
     number = {90},
     year = {2004},
     doi = {10.2298/PIM0476081K},
     zbl = {1150.11031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0476081K/}
}
TY  - JOUR
AU  - Yuichi Kamiya
AU  - Masatoshi Suzuki
TI  - An Asymptotic Formula for a sum Involving Zeros of the Riemann Zeta-function
JO  - Publications de l'Institut Mathématique
PY  - 2004
SP  - 81 
VL  - _N_S_76
IS  - 90
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0476081K/
DO  - 10.2298/PIM0476081K
LA  - en
ID  - 10_2298_PIM0476081K
ER  - 
%0 Journal Article
%A Yuichi Kamiya
%A Masatoshi Suzuki
%T An Asymptotic Formula for a sum Involving Zeros of the Riemann Zeta-function
%J Publications de l'Institut Mathématique
%D 2004
%P 81 
%V _N_S_76
%N 90
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0476081K/
%R 10.2298/PIM0476081K
%G en
%F 10_2298_PIM0476081K
Yuichi Kamiya; Masatoshi Suzuki. An Asymptotic Formula for a sum Involving Zeros of the Riemann Zeta-function. Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 81 . doi : 10.2298/PIM0476081K. http://geodesic.mathdoc.fr/articles/10.2298/PIM0476081K/

Cité par Sources :