The Spectral Mean Square of Hecke L-functions on the Critical Line
Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 41
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The Hecke $L$-function $H_j(s)$ attached to the $j$th Maass
form for the full modular group is estimated in the mean square over a
spectral interval for $s=\frac12+it$. As a corollary, we obtain the
estimate $H_j(\frac12+it)\ll t^{1/3+\varepsilon}$ for
$t\gg\kappa_j^{3/2}$, where $1/4+\kappa_j^2$ is the respective $j$th
eigenvalue of the hyperbolic Laplacian. This extends a result due to
T. Meurman.
DOI :
10.2298/PIM0476041J
Classification :
11F66 11M41
Keywords: automorphic L-functions, spectral theory
Keywords: automorphic L-functions, spectral theory
@article{10_2298_PIM0476041J,
author = {M. Jutila},
title = {The {Spectral} {Mean} {Square} of {Hecke} {L-functions} on the {Critical} {Line}},
journal = {Publications de l'Institut Math\'ematique},
pages = {41 },
publisher = {mathdoc},
volume = {_N_S_76},
number = {90},
year = {2004},
doi = {10.2298/PIM0476041J},
zbl = {1098.11033},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0476041J/}
}
TY - JOUR AU - M. Jutila TI - The Spectral Mean Square of Hecke L-functions on the Critical Line JO - Publications de l'Institut Mathématique PY - 2004 SP - 41 VL - _N_S_76 IS - 90 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0476041J/ DO - 10.2298/PIM0476041J LA - en ID - 10_2298_PIM0476041J ER -
M. Jutila. The Spectral Mean Square of Hecke L-functions on the Critical Line. Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 41 . doi: 10.2298/PIM0476041J
Cité par Sources :