The Spectral Mean Square of Hecke L-functions on the Critical Line
Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 41 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Hecke $L$-function $H_j(s)$ attached to the $j$th Maass form for the full modular group is estimated in the mean square over a spectral interval for $s=\frac12+it$. As a corollary, we obtain the estimate $H_j(\frac12+it)\ll t^{1/3+\varepsilon}$ for $t\gg\kappa_j^{3/2}$, where $1/4+\kappa_j^2$ is the respective $j$th eigenvalue of the hyperbolic Laplacian. This extends a result due to T. Meurman.
DOI : 10.2298/PIM0476041J
Classification : 11F66 11M41
Keywords: automorphic L-functions, spectral theory
@article{10_2298_PIM0476041J,
     author = {M. Jutila},
     title = {The {Spectral} {Mean} {Square} of {Hecke} {L-functions} on the {Critical} {Line}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {41 },
     publisher = {mathdoc},
     volume = {_N_S_76},
     number = {90},
     year = {2004},
     doi = {10.2298/PIM0476041J},
     zbl = {1098.11033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0476041J/}
}
TY  - JOUR
AU  - M. Jutila
TI  - The Spectral Mean Square of Hecke L-functions on the Critical Line
JO  - Publications de l'Institut Mathématique
PY  - 2004
SP  - 41 
VL  - _N_S_76
IS  - 90
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0476041J/
DO  - 10.2298/PIM0476041J
LA  - en
ID  - 10_2298_PIM0476041J
ER  - 
%0 Journal Article
%A M. Jutila
%T The Spectral Mean Square of Hecke L-functions on the Critical Line
%J Publications de l'Institut Mathématique
%D 2004
%P 41 
%V _N_S_76
%N 90
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0476041J/
%R 10.2298/PIM0476041J
%G en
%F 10_2298_PIM0476041J
M. Jutila. The Spectral Mean Square of Hecke L-functions on the Critical Line. Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 41 . doi : 10.2298/PIM0476041J. http://geodesic.mathdoc.fr/articles/10.2298/PIM0476041J/

Cité par Sources :