Star Complements and Maximal Exceptional Graphs
Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 25 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If $G$ is a maximal exceptional graph then either (a) $G$ is the cone over a graph switching-equivalent to the line graph $L(K_8)$ or (b) $G$ has $K_8$ as a star complement for the eigenvalue $-2$ (or both). In case (b) it is shown how $G$ can be constructed from $K_8$ using intersecting families of $3$-sets.
DOI : 10.2298/PIM0476025R
Classification : 05C50
Keywords: exceptional graph, eigenvalue, star complement
@article{10_2298_PIM0476025R,
     author = {P. Rowlinson},
     title = {Star {Complements} and {Maximal} {Exceptional} {Graphs}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {25 },
     publisher = {mathdoc},
     volume = {_N_S_76},
     number = {90},
     year = {2004},
     doi = {10.2298/PIM0476025R},
     zbl = {1088.05053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0476025R/}
}
TY  - JOUR
AU  - P. Rowlinson
TI  - Star Complements and Maximal Exceptional Graphs
JO  - Publications de l'Institut Mathématique
PY  - 2004
SP  - 25 
VL  - _N_S_76
IS  - 90
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0476025R/
DO  - 10.2298/PIM0476025R
LA  - en
ID  - 10_2298_PIM0476025R
ER  - 
%0 Journal Article
%A P. Rowlinson
%T Star Complements and Maximal Exceptional Graphs
%J Publications de l'Institut Mathématique
%D 2004
%P 25 
%V _N_S_76
%N 90
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0476025R/
%R 10.2298/PIM0476025R
%G en
%F 10_2298_PIM0476025R
P. Rowlinson. Star Complements and Maximal Exceptional Graphs. Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 25 . doi : 10.2298/PIM0476025R. http://geodesic.mathdoc.fr/articles/10.2298/PIM0476025R/

Cité par Sources :