Star Complements and Maximal Exceptional Graphs
Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 25
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If $G$ is a maximal exceptional graph then either (a) $G$ is
the cone over a graph switching-equivalent to the line graph $L(K_8)$
or (b) $G$ has $K_8$ as a star complement for the eigenvalue $-2$
(or both). In case (b) it is shown how $G$ can be constructed from
$K_8$ using intersecting families of $3$-sets.
DOI :
10.2298/PIM0476025R
Classification :
05C50
Keywords: exceptional graph, eigenvalue, star complement
Keywords: exceptional graph, eigenvalue, star complement
@article{10_2298_PIM0476025R,
author = {P. Rowlinson},
title = {Star {Complements} and {Maximal} {Exceptional} {Graphs}},
journal = {Publications de l'Institut Math\'ematique},
pages = {25 },
year = {2004},
volume = {_N_S_76},
number = {90},
doi = {10.2298/PIM0476025R},
zbl = {1088.05053},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0476025R/}
}
P. Rowlinson. Star Complements and Maximal Exceptional Graphs. Publications de l'Institut Mathématique, _N_S_76 (2004) no. 90, p. 25 . doi: 10.2298/PIM0476025R
Cité par Sources :