MÖbius Transformations and Multiplicative Representations for Spherical Potentials
Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 253 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For the unit spheres $S^n\subset\mathbf R^{n+1}$ and $S^{2n-1}\subset\mathbf R^{2n}=\mathbf C^n$ we prove the following identities for two classical potentials $ \int_{S^n}\frac{f(y)}{|x-y|^{n+\alpha}}d\sigma_y =\frac{1}{|1-|x|^2|^\alpha} \int_{S^n}\frac{f(T_{n,x}(y))}{|x-y|^{n-\alpha}}d\sigma_y, $ $ \int_{S^{2n-1}}\frac{F(\zeta)d\sigma_\zeta}{|1-(z,\zeta)|^{n+\alpha}}= \frac{1}{(1-|z|^2)^\alpha}\int_{S^{2n-1}} \frac{F(\Phi_{n,z}(\zeta))d\sigma_\zeta}{|1-(z,\zeta)|^{n-\alpha}}, $ where $x\in\mathbf R^{n+1}$ ($|x|\ne0$ and $|x|\ne1$), $z\in\mathbf C^n$ ($|z|1$), $T_{n,x}$ and $\Phi_{n,z}$ are explicit involutions of $S^n$ and $S^{2n-1}$ respectively. Some applications of these formulas are also considered.
DOI : 10.2298/PIM0475253A
Classification : 31B25 30C65
Keywords: spherical potentials
@article{10_2298_PIM0475253A,
     author = {F. G. Avkhadiev},
     title = {M\"Obius {Transformations} and {Multiplicative} {Representations} for {Spherical} {Potentials}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {253 },
     publisher = {mathdoc},
     volume = {_N_S_75},
     number = {89},
     year = {2004},
     doi = {10.2298/PIM0475253A},
     zbl = {1078.31004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0475253A/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - MÖbius Transformations and Multiplicative Representations for Spherical Potentials
JO  - Publications de l'Institut Mathématique
PY  - 2004
SP  - 253 
VL  - _N_S_75
IS  - 89
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0475253A/
DO  - 10.2298/PIM0475253A
LA  - en
ID  - 10_2298_PIM0475253A
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T MÖbius Transformations and Multiplicative Representations for Spherical Potentials
%J Publications de l'Institut Mathématique
%D 2004
%P 253 
%V _N_S_75
%N 89
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0475253A/
%R 10.2298/PIM0475253A
%G en
%F 10_2298_PIM0475253A
F. G. Avkhadiev. MÖbius Transformations and Multiplicative Representations for Spherical Potentials. Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 253 . doi : 10.2298/PIM0475253A. http://geodesic.mathdoc.fr/articles/10.2298/PIM0475253A/

Cité par Sources :