MÖbius Transformations and Multiplicative Representations for Spherical Potentials
Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 253

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For the unit spheres $S^n\subset\mathbf R^{n+1}$ and $S^{2n-1}\subset\mathbf R^{2n}=\mathbf C^n$ we prove the following identities for two classical potentials $ \int_{S^n}\frac{f(y)}{|x-y|^{n+\alpha}}d\sigma_y =\frac{1}{|1-|x|^2|^\alpha} \int_{S^n}\frac{f(T_{n,x}(y))}{|x-y|^{n-\alpha}}d\sigma_y, $ $ \int_{S^{2n-1}}\frac{F(\zeta)d\sigma_\zeta}{|1-(z,\zeta)|^{n+\alpha}}= \frac{1}{(1-|z|^2)^\alpha}\int_{S^{2n-1}} \frac{F(\Phi_{n,z}(\zeta))d\sigma_\zeta}{|1-(z,\zeta)|^{n-\alpha}}, $ where $x\in\mathbf R^{n+1}$ ($|x|\ne0$ and $|x|\ne1$), $z\in\mathbf C^n$ ($|z|1$), $T_{n,x}$ and $\Phi_{n,z}$ are explicit involutions of $S^n$ and $S^{2n-1}$ respectively. Some applications of these formulas are also considered.
DOI : 10.2298/PIM0475253A
Classification : 31B25 30C65
Keywords: spherical potentials
@article{10_2298_PIM0475253A,
     author = {F. G. Avkhadiev},
     title = {M\"Obius {Transformations} and {Multiplicative} {Representations} for {Spherical} {Potentials}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {253 },
     publisher = {mathdoc},
     volume = {_N_S_75},
     number = {89},
     year = {2004},
     doi = {10.2298/PIM0475253A},
     zbl = {1078.31004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0475253A/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - MÖbius Transformations and Multiplicative Representations for Spherical Potentials
JO  - Publications de l'Institut Mathématique
PY  - 2004
SP  - 253 
VL  - _N_S_75
IS  - 89
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0475253A/
DO  - 10.2298/PIM0475253A
LA  - en
ID  - 10_2298_PIM0475253A
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T MÖbius Transformations and Multiplicative Representations for Spherical Potentials
%J Publications de l'Institut Mathématique
%D 2004
%P 253 
%V _N_S_75
%N 89
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0475253A/
%R 10.2298/PIM0475253A
%G en
%F 10_2298_PIM0475253A
F. G. Avkhadiev. MÖbius Transformations and Multiplicative Representations for Spherical Potentials. Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 253 . doi: 10.2298/PIM0475253A

Cité par Sources :