Quasiconformal Reflection Coefficient and Fredholm Eigenvalue of an Ellipse of Hyperbolic Geometry
Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 77 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We consider extremal quasiconformal reflections at a Jordan curve $C$, and related questions. Then we examine in more detail e.g., the special case of an ellipse $C$ of hyperbolic geometry.
DOI : 10.2298/PIM0475077K
Classification : 30C62 30C75 51M09
Keywords: hyperbolic geometry
@article{10_2298_PIM0475077K,
     author = {Reiner K\"uhnau},
     title = {Quasiconformal {Reflection} {Coefficient} and {Fredholm} {Eigenvalue} of an {Ellipse} of {Hyperbolic} {Geometry}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {77 },
     publisher = {mathdoc},
     volume = {_N_S_75},
     number = {89},
     year = {2004},
     doi = {10.2298/PIM0475077K},
     zbl = {1079.30020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0475077K/}
}
TY  - JOUR
AU  - Reiner Kühnau
TI  - Quasiconformal Reflection Coefficient and Fredholm Eigenvalue of an Ellipse of Hyperbolic Geometry
JO  - Publications de l'Institut Mathématique
PY  - 2004
SP  - 77 
VL  - _N_S_75
IS  - 89
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0475077K/
DO  - 10.2298/PIM0475077K
LA  - en
ID  - 10_2298_PIM0475077K
ER  - 
%0 Journal Article
%A Reiner Kühnau
%T Quasiconformal Reflection Coefficient and Fredholm Eigenvalue of an Ellipse of Hyperbolic Geometry
%J Publications de l'Institut Mathématique
%D 2004
%P 77 
%V _N_S_75
%N 89
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0475077K/
%R 10.2298/PIM0475077K
%G en
%F 10_2298_PIM0475077K
Reiner Kühnau. Quasiconformal Reflection Coefficient and Fredholm Eigenvalue of an Ellipse of Hyperbolic Geometry. Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 77 . doi : 10.2298/PIM0475077K. http://geodesic.mathdoc.fr/articles/10.2298/PIM0475077K/

Cité par Sources :