Asymptotics of the Admissible Growth of the Coefficient of Quasiconformality at Infinity and Injectivity of Immersions of Riemannian Manifolds
Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 53
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present sharp asymptotics of the admissible growth for
the quasiconformality coefficient in the general global homeomorphism
theorem. The theorem applies to noncompact Riemannian manifolds of
conformally parabolic type and of dimension greater than two.
@article{10_2298_PIM0475053Z,
author = {V. A. Zorich},
title = {Asymptotics of the {Admissible} {Growth} of the {Coefficient} of {Quasiconformality} at {Infinity} and {Injectivity} of {Immersions} of {Riemannian} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {53 },
publisher = {mathdoc},
volume = {_N_S_75},
number = {89},
year = {2004},
doi = {10.2298/PIM0475053Z},
zbl = {1086.30026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0475053Z/}
}
TY - JOUR AU - V. A. Zorich TI - Asymptotics of the Admissible Growth of the Coefficient of Quasiconformality at Infinity and Injectivity of Immersions of Riemannian Manifolds JO - Publications de l'Institut Mathématique PY - 2004 SP - 53 VL - _N_S_75 IS - 89 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0475053Z/ DO - 10.2298/PIM0475053Z LA - en ID - 10_2298_PIM0475053Z ER -
%0 Journal Article %A V. A. Zorich %T Asymptotics of the Admissible Growth of the Coefficient of Quasiconformality at Infinity and Injectivity of Immersions of Riemannian Manifolds %J Publications de l'Institut Mathématique %D 2004 %P 53 %V _N_S_75 %N 89 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0475053Z/ %R 10.2298/PIM0475053Z %G en %F 10_2298_PIM0475053Z
V. A. Zorich. Asymptotics of the Admissible Growth of the Coefficient of Quasiconformality at Infinity and Injectivity of Immersions of Riemannian Manifolds. Publications de l'Institut Mathématique, _N_S_75 (2004) no. 89, p. 53 . doi: 10.2298/PIM0475053Z
Cité par Sources :