A Function Defined on an Even-dimensional Real Submanifold of a Hermitian Manifold
Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 85 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

On an even-dimensional real submanifold of a Hermitian manifold, making use of the fundamental 2-form of the ambient manifold, we define a function. In this paper, we investigate the function in detail in some special submanifold.
DOI : 10.2298/PIM0374085O
Classification : 53C15 53C25 53C40
Keywords: fundamental 2-form, totally umbilical submanifold, mean curvature vector field
@article{10_2298_PIM0374085O,
     author = {Masafumi Okumura},
     title = {A {Function} {Defined} on an {Even-dimensional} {Real} {Submanifold} of a {Hermitian} {Manifold}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {85 },
     publisher = {mathdoc},
     volume = {_N_S_74},
     number = {88},
     year = {2003},
     doi = {10.2298/PIM0374085O},
     zbl = {1080.53053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0374085O/}
}
TY  - JOUR
AU  - Masafumi Okumura
TI  - A Function Defined on an Even-dimensional Real Submanifold of a Hermitian Manifold
JO  - Publications de l'Institut Mathématique
PY  - 2003
SP  - 85 
VL  - _N_S_74
IS  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0374085O/
DO  - 10.2298/PIM0374085O
LA  - en
ID  - 10_2298_PIM0374085O
ER  - 
%0 Journal Article
%A Masafumi Okumura
%T A Function Defined on an Even-dimensional Real Submanifold of a Hermitian Manifold
%J Publications de l'Institut Mathématique
%D 2003
%P 85 
%V _N_S_74
%N 88
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0374085O/
%R 10.2298/PIM0374085O
%G en
%F 10_2298_PIM0374085O
Masafumi Okumura. A Function Defined on an Even-dimensional Real Submanifold of a Hermitian Manifold. Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 85 . doi : 10.2298/PIM0374085O. http://geodesic.mathdoc.fr/articles/10.2298/PIM0374085O/

Cité par Sources :