Minimum Segments in Sequent Derivations
Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 5
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In a system of sequents for intuitionistic predicate
logic, derivations without a special kind of cuts (maximum cuts)
will be considered. The following be shown: in a derivation
without maximum cuts there are paths of the same form as paths in
a normal derivation of natural deduction, i.e., these paths have
the E-part, the I-part, and one minimum part which corresponds to
a minimum segment in a normal derivation.
@article{10_2298_PIM0374005B,
author = {Mirjana Borisavljevi\'c},
title = {Minimum {Segments} in {Sequent} {Derivations}},
journal = {Publications de l'Institut Math\'ematique},
pages = {5 },
publisher = {mathdoc},
volume = {_N_S_74},
number = {88},
year = {2003},
doi = {10.2298/PIM0374005B},
zbl = {1076.03037},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0374005B/}
}
TY - JOUR AU - Mirjana Borisavljević TI - Minimum Segments in Sequent Derivations JO - Publications de l'Institut Mathématique PY - 2003 SP - 5 VL - _N_S_74 IS - 88 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0374005B/ DO - 10.2298/PIM0374005B LA - en ID - 10_2298_PIM0374005B ER -
Mirjana Borisavljević. Minimum Segments in Sequent Derivations. Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 5 . doi: 10.2298/PIM0374005B
Cité par Sources :