Minimum Segments in Sequent Derivations
Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 5 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In a system of sequents for intuitionistic predicate logic, derivations without a special kind of cuts (maximum cuts) will be considered. The following be shown: in a derivation without maximum cuts there are paths of the same form as paths in a normal derivation of natural deduction, i.e., these paths have the E-part, the I-part, and one minimum part which corresponds to a minimum segment in a normal derivation.
DOI : 10.2298/PIM0374005B
Classification : 03F05 03F07
Keywords: sequent calculus
@article{10_2298_PIM0374005B,
     author = {Mirjana Borisavljevi\'c},
     title = {Minimum {Segments} in {Sequent} {Derivations}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {5 },
     publisher = {mathdoc},
     volume = {_N_S_74},
     number = {88},
     year = {2003},
     doi = {10.2298/PIM0374005B},
     zbl = {1076.03037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0374005B/}
}
TY  - JOUR
AU  - Mirjana Borisavljević
TI  - Minimum Segments in Sequent Derivations
JO  - Publications de l'Institut Mathématique
PY  - 2003
SP  - 5 
VL  - _N_S_74
IS  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0374005B/
DO  - 10.2298/PIM0374005B
LA  - en
ID  - 10_2298_PIM0374005B
ER  - 
%0 Journal Article
%A Mirjana Borisavljević
%T Minimum Segments in Sequent Derivations
%J Publications de l'Institut Mathématique
%D 2003
%P 5 
%V _N_S_74
%N 88
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0374005B/
%R 10.2298/PIM0374005B
%G en
%F 10_2298_PIM0374005B
Mirjana Borisavljević. Minimum Segments in Sequent Derivations. Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 5 . doi : 10.2298/PIM0374005B. http://geodesic.mathdoc.fr/articles/10.2298/PIM0374005B/

Cité par Sources :