Non-metric Rim-metrizable Continua and Unique Hyperspace
Publications de l'Institut Mathématique, _N_S_73 (2003) no. 87, p. 97
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A class $\Lambda$ of continua is said to be
$C$\textit{-determined} provided that if $X,Y\in\Lambda$ and
$C(X)\approx C(Y)$, then $X\approx Y$. A continuum $X$ has
\textit{unique hyperspace} provided that if $Y$ is a continuum and
$C(X)\approx C(Y)$, then $X\approx Y$. In the realm of metric continua
the following classes of continua are known to have unique hyperspace:
hereditarily indecomposable continua, smooth fans (in the class of
fans) and indecomposable continua whose proper and non-degenerate
subcontinua are arcs. We prove that these classes have unique hyperspace in the realm of
rim-metrizable non-metric continua.
DOI :
10.2298/PIM0373097L
Classification :
54B20 54B35
Keywords: hyperspace, continuum, inverse system
Keywords: hyperspace, continuum, inverse system
@article{10_2298_PIM0373097L,
author = {Ivan Lon\v{c}ar},
title = {Non-metric {Rim-metrizable} {Continua} and {Unique} {Hyperspace}},
journal = {Publications de l'Institut Math\'ematique},
pages = {97 },
publisher = {mathdoc},
volume = {_N_S_73},
number = {87},
year = {2003},
doi = {10.2298/PIM0373097L},
zbl = {1054.54026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0373097L/}
}
TY - JOUR AU - Ivan Lončar TI - Non-metric Rim-metrizable Continua and Unique Hyperspace JO - Publications de l'Institut Mathématique PY - 2003 SP - 97 VL - _N_S_73 IS - 87 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0373097L/ DO - 10.2298/PIM0373097L LA - en ID - 10_2298_PIM0373097L ER -
Ivan Lončar. Non-metric Rim-metrizable Continua and Unique Hyperspace. Publications de l'Institut Mathématique, _N_S_73 (2003) no. 87, p. 97 . doi: 10.2298/PIM0373097L
Cité par Sources :