The Geometry of Self-adjunction
Publications de l'Institut Mathématique, _N_S_73 (2003) no. 87, p. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This paper is a companion to another paper where it is shown
that the multiplicative monoids of Temperley-Lieb algebras are
isomorphic to monoids of endomorphisms in categories where an
endofunctor is adjoint to itself. Such a self-adjunction underlies the
orthogonal group case of Brauer's representation of the Brauer
centralizer algebras. The present paper provides detailed proofs of
results on the presentation of various monoids of diagrams by
generators and relations, on which the other paper depends.
DOI :
10.2298/PIM0373001D
Classification :
57M99 20M50 18A40
Keywords: tangles, monoids, Temperley-Lieb algebras, adjunction
Keywords: tangles, monoids, Temperley-Lieb algebras, adjunction
@article{10_2298_PIM0373001D,
author = {Kosta Do\v{s}en and Zoran Petri\'c},
title = {The {Geometry} of {Self-adjunction}},
journal = {Publications de l'Institut Math\'ematique},
pages = {1 },
year = {2003},
volume = {_N_S_73},
number = {87},
doi = {10.2298/PIM0373001D},
zbl = {1055.57025},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0373001D/}
}
Kosta Došen; Zoran Petrić. The Geometry of Self-adjunction. Publications de l'Institut Mathématique, _N_S_73 (2003) no. 87, p. 1 . doi: 10.2298/PIM0373001D
Cité par Sources :