Rate of Convergence of the Szasz-kantorovitch-bezier Operators for Bounded Variation Functions
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 137

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We introduce the Szasz--Kantorovitch--Bezier operators $\hat S_{n,\alpha} $ which is the modified form of Szasz--Kantorovitch operators and study the rate of convergence of bounded variation functions for these operators.
DOI : 10.2298/PIM0272137G
Classification : 41A25 41A30
Keywords: rate of convergence, bounded variation, Berry Esseen theorem, total variation, linear positive operators
@article{10_2298_PIM0272137G,
     author = {Vijay Gupta and Vipin Vasishtha},
     title = {Rate of {Convergence} of the {Szasz-kantorovitch-bezier} {Operators} for {Bounded} {Variation} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {137 },
     publisher = {mathdoc},
     volume = {_N_S_72},
     number = {86},
     year = {2002},
     doi = {10.2298/PIM0272137G},
     zbl = {1052.41005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272137G/}
}
TY  - JOUR
AU  - Vijay Gupta
AU  - Vipin Vasishtha
TI  - Rate of Convergence of the Szasz-kantorovitch-bezier Operators for Bounded Variation Functions
JO  - Publications de l'Institut Mathématique
PY  - 2002
SP  - 137 
VL  - _N_S_72
IS  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272137G/
DO  - 10.2298/PIM0272137G
LA  - en
ID  - 10_2298_PIM0272137G
ER  - 
%0 Journal Article
%A Vijay Gupta
%A Vipin Vasishtha
%T Rate of Convergence of the Szasz-kantorovitch-bezier Operators for Bounded Variation Functions
%J Publications de l'Institut Mathématique
%D 2002
%P 137 
%V _N_S_72
%N 86
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0272137G/
%R 10.2298/PIM0272137G
%G en
%F 10_2298_PIM0272137G
Vijay Gupta; Vipin Vasishtha. Rate of Convergence of the Szasz-kantorovitch-bezier Operators for Bounded Variation Functions. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 137 . doi: 10.2298/PIM0272137G

Cité par Sources :