Rate of Convergence of the Szasz-kantorovitch-bezier Operators for Bounded Variation Functions
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 137
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We introduce the Szasz--Kantorovitch--Bezier operators
$\hat S_{n,\alpha} $ which is the modified form of Szasz--Kantorovitch
operators and study the rate of convergence of bounded variation
functions for these operators.
DOI :
10.2298/PIM0272137G
Classification :
41A25 41A30
Keywords: rate of convergence, bounded variation, Berry Esseen theorem, total variation, linear positive operators
Keywords: rate of convergence, bounded variation, Berry Esseen theorem, total variation, linear positive operators
@article{10_2298_PIM0272137G,
author = {Vijay Gupta and Vipin Vasishtha},
title = {Rate of {Convergence} of the {Szasz-kantorovitch-bezier} {Operators} for {Bounded} {Variation} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {137 },
year = {2002},
volume = {_N_S_72},
number = {86},
doi = {10.2298/PIM0272137G},
zbl = {1052.41005},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272137G/}
}
TY - JOUR AU - Vijay Gupta AU - Vipin Vasishtha TI - Rate of Convergence of the Szasz-kantorovitch-bezier Operators for Bounded Variation Functions JO - Publications de l'Institut Mathématique PY - 2002 SP - 137 VL - _N_S_72 IS - 86 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272137G/ DO - 10.2298/PIM0272137G LA - en ID - 10_2298_PIM0272137G ER -
%0 Journal Article %A Vijay Gupta %A Vipin Vasishtha %T Rate of Convergence of the Szasz-kantorovitch-bezier Operators for Bounded Variation Functions %J Publications de l'Institut Mathématique %D 2002 %P 137 %V _N_S_72 %N 86 %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0272137G/ %R 10.2298/PIM0272137G %G en %F 10_2298_PIM0272137G
Vijay Gupta; Vipin Vasishtha. Rate of Convergence of the Szasz-kantorovitch-bezier Operators for Bounded Variation Functions. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 137 . doi: 10.2298/PIM0272137G
Cité par Sources :