Convergences des Fonctions Convexes et Approximations Inf-convolutives Generalisees
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 123 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\Phi:X\to \mathbb R^+$ be a kernel bounded on bounded subsets of a normed linear space $X$ and $f$ be a function in $\Gamma(X)$. The inf-convolution approximates of $f$ of parameters $\lambda>0$ associated to $\Phi$ are the functions defined for each $x\in X$ by $f_\lambda(x)=\inf\{f(u)+\Phi(\frac{x-u}\lambda):u\in X\}$. In this article, we prove that the slice convergence of a sequence $(f^n)_n$ in $\Gamma(X)$ is equivalent on the one hand to the convergence in the same sense of its sequences of inf-convolution approximates of sufficiently small parameters associated to $\Phi$, and on the other hand to the pointwise convergence of the regularized sequences defined in the theorem 3.10 of this paper. As well, we show that the Attouch--Wets convergence of $(f^n)_n$ is equivalent to the convergence in the same sense of its approximate sequences when the parameters $\lambda$ converge to $0$; which is also equivalent to their uniform convergence on bounded subsets of $X$. Then, we generalize in particular the main results of G. Beer [12] established in the case of Baire-Wijsman regularizations($\Phi=\|\!\cdot\!\|$).
DOI : 10.2298/PIM0272123M
Classification : 52A41 54B20 40A30
@article{10_2298_PIM0272123M,
     author = {D. Mentagui et K. el Hajioui},
     title = {Convergences des {Fonctions} {Convexes} et {Approximations} {Inf-convolutives} {Generalisees}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {123 },
     publisher = {mathdoc},
     volume = {_N_S_72},
     number = {86},
     year = {2002},
     doi = {10.2298/PIM0272123M},
     zbl = {1086.49012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272123M/}
}
TY  - JOUR
AU  - D. Mentagui et K. el Hajioui
TI  - Convergences des Fonctions Convexes et Approximations Inf-convolutives Generalisees
JO  - Publications de l'Institut Mathématique
PY  - 2002
SP  - 123 
VL  - _N_S_72
IS  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272123M/
DO  - 10.2298/PIM0272123M
LA  - en
ID  - 10_2298_PIM0272123M
ER  - 
%0 Journal Article
%A D. Mentagui et K. el Hajioui
%T Convergences des Fonctions Convexes et Approximations Inf-convolutives Generalisees
%J Publications de l'Institut Mathématique
%D 2002
%P 123 
%V _N_S_72
%N 86
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0272123M/
%R 10.2298/PIM0272123M
%G en
%F 10_2298_PIM0272123M
D. Mentagui et K. el Hajioui. Convergences des Fonctions Convexes et Approximations Inf-convolutives Generalisees. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 123 . doi : 10.2298/PIM0272123M. http://geodesic.mathdoc.fr/articles/10.2298/PIM0272123M/

Cité par Sources :