Convergences des Fonctions Convexes et Approximations Inf-convolutives Generalisees
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 123
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\Phi:X\to \mathbb R^+$ be a kernel
bounded on bounded subsets of a normed linear space $X$ and $f$ be a
function in $\Gamma(X)$. The inf-convolution approximates
of $f$ of parameters $\lambda>0$ associated to $\Phi$ are the functions
defined for each $x\in X$ by
$f_\lambda(x)=\inf\{f(u)+\Phi(\frac{x-u}\lambda):u\in X\}$.
In this article, we prove that the slice convergence of a sequence
$(f^n)_n$ in $\Gamma(X)$ is equivalent on the one hand
to the convergence in the same sense of its sequences of inf-convolution
approximates of sufficiently small parameters associated to $\Phi$, and
on the other hand to the pointwise convergence of the regularized sequences
defined in the theorem 3.10 of this paper. As well, we show that
the Attouch--Wets convergence of $(f^n)_n$ is equivalent to
the convergence in the same sense of its approximate sequences when the
parameters $\lambda$ converge to $0$; which is also equivalent to their
uniform convergence on bounded subsets of $X$. Then, we generalize in
particular the main results of G. Beer [12] established in the case of
Baire-Wijsman regularizations($\Phi=\|\!\cdot\!\|$).
@article{10_2298_PIM0272123M,
author = {D. Mentagui et K. el Hajioui},
title = {Convergences des {Fonctions} {Convexes} et {Approximations} {Inf-convolutives} {Generalisees}},
journal = {Publications de l'Institut Math\'ematique},
pages = {123 },
publisher = {mathdoc},
volume = {_N_S_72},
number = {86},
year = {2002},
doi = {10.2298/PIM0272123M},
zbl = {1086.49012},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272123M/}
}
TY - JOUR AU - D. Mentagui et K. el Hajioui TI - Convergences des Fonctions Convexes et Approximations Inf-convolutives Generalisees JO - Publications de l'Institut Mathématique PY - 2002 SP - 123 VL - _N_S_72 IS - 86 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272123M/ DO - 10.2298/PIM0272123M LA - en ID - 10_2298_PIM0272123M ER -
%0 Journal Article %A D. Mentagui et K. el Hajioui %T Convergences des Fonctions Convexes et Approximations Inf-convolutives Generalisees %J Publications de l'Institut Mathématique %D 2002 %P 123 %V _N_S_72 %N 86 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0272123M/ %R 10.2298/PIM0272123M %G en %F 10_2298_PIM0272123M
D. Mentagui et K. el Hajioui. Convergences des Fonctions Convexes et Approximations Inf-convolutives Generalisees. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 123 . doi: 10.2298/PIM0272123M
Cité par Sources :