Derivations of Skew Polynomial Rings
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 107 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $R$ be a commutative ring of characteristic zero. Under certain conditions we determine the type of derivations of a skew polynomial ring $A_n=R[X_1,X_2,\dots,X_n;d_1,d_2,\dots,d_n]$ over $R$, where $d_1,d_2,\dots,d_n$ are derivations of $R$ commuting to each other, and we examine properties of the ideals of $A_n$.
DOI : 10.2298/PIM0272107H
Classification : 13N15 16S36
@article{10_2298_PIM0272107H,
     author = {Naoki Hamaguchi and Atsushi Nakajima},
     title = {Derivations of {Skew} {Polynomial} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {107 },
     publisher = {mathdoc},
     volume = {_N_S_72},
     number = {86},
     year = {2002},
     doi = {10.2298/PIM0272107H},
     zbl = {1206.16043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272107H/}
}
TY  - JOUR
AU  - Naoki Hamaguchi
AU  - Atsushi Nakajima
TI  - Derivations of Skew Polynomial Rings
JO  - Publications de l'Institut Mathématique
PY  - 2002
SP  - 107 
VL  - _N_S_72
IS  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272107H/
DO  - 10.2298/PIM0272107H
LA  - en
ID  - 10_2298_PIM0272107H
ER  - 
%0 Journal Article
%A Naoki Hamaguchi
%A Atsushi Nakajima
%T Derivations of Skew Polynomial Rings
%J Publications de l'Institut Mathématique
%D 2002
%P 107 
%V _N_S_72
%N 86
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0272107H/
%R 10.2298/PIM0272107H
%G en
%F 10_2298_PIM0272107H
Naoki Hamaguchi; Atsushi Nakajima. Derivations of Skew Polynomial Rings. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 107 . doi : 10.2298/PIM0272107H. http://geodesic.mathdoc.fr/articles/10.2298/PIM0272107H/

Cité par Sources :