Integral Kernels with Regular Variation Property
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 55
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We give a necessary and sufficient condition for a positive
measurable kernel ${\bold C}(\cdot)$ to satisfy
$
\int_1^xf(t){\bold C}(t)dt\sim f(x)\int_1^x\bold C(t)dt\qquad(x\to\infty)
$
whenever $f(\cdot)$ is from the class of Karamata's regularly varying
functions.
@article{10_2298_PIM0272055S,
author = {Slavko Simi\'c},
title = {Integral {Kernels} with {Regular} {Variation} {Property}},
journal = {Publications de l'Institut Math\'ematique},
pages = {55 },
publisher = {mathdoc},
volume = {_N_S_72},
number = {86},
year = {2002},
doi = {10.2298/PIM0272055S},
zbl = {1053.26001},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272055S/}
}
TY - JOUR AU - Slavko Simić TI - Integral Kernels with Regular Variation Property JO - Publications de l'Institut Mathématique PY - 2002 SP - 55 VL - _N_S_72 IS - 86 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272055S/ DO - 10.2298/PIM0272055S LA - en ID - 10_2298_PIM0272055S ER -
Slavko Simić. Integral Kernels with Regular Variation Property. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 55 . doi: 10.2298/PIM0272055S
Cité par Sources :