The Category of Compact Metric Spaces and its Functional Analytic Duals
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 29 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A Lipschitz algebra $\operatorname{Lip}(X,d_X)$ over a compact metric space $(X,d_X)$ consists of all complex valued continuous functions on $(X,d_X)$ which are Lipschitz with respect to $d_X$ and the standard metric on the complex plane ${\mathbb C}$ (absolute value). The norm on $\operatorname{Lip}(X,d_X)$ is given by $\|f\|=\sup\{|f(x)|:x\in X\}+\sup\{|f(x)-f(y)|/d_X(x,y): x,y\in X\;\\; x\ne y\}$. We show that the category $\operatorname{CLip}$ in which objects are Lipschitz algebras and morphisms are algebra homomorphisms is dual to the category $\operatorname{CMet}$ in which objects are compact metric spaces and morphisms are Lipschitz maps. Let $(X,d)$ be any metric space, and let $Y=\{(x,y)\in X\times X: x\ne y\}$. De Leeuw derivation defined by the metric $d$ is the operator $D:C_b(X)\to C_b(Y)$ be defined by $(Df)(x,y)=(f(y)-f(x))/d(x,y)$ for $(x,y)\in Y$. We consider the category $\operatorname{CDer}$ in which objects are pairs $(C(X),D_X)$, where $(X,d_X)$ is a compact metric space and $D_X$ is the correspoding de Leeuw derivation, and morphisms are all homomorphisms $\nu: C(X)\to C(Y)$ for which $f\in\operatorname{Domain}(D_X)$ implies $\nu f\in\operatorname{Domain}(D_Y)$. We show that $\operatorname{CDer}$ is equivalent to $\operatorname{CLip}$, and that $\operatorname{CDer}$ is dual to $\operatorname{CMet}$.
DOI : 10.2298/PIM0272029P
Classification : 18B99 18B30 46J10 46L89 46M15.
Keywords: Lipschitz algebras, de Leeuw derivations, dual and equivalent categories.
@article{10_2298_PIM0272029P,
     author = {Branka Pavlovi\'c},
     title = {The {Category} of {Compact} {Metric} {Spaces} and its {Functional} {Analytic} {Duals}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {29 },
     publisher = {mathdoc},
     volume = {_N_S_72},
     number = {86},
     year = {2002},
     doi = {10.2298/PIM0272029P},
     zbl = {1046.18002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272029P/}
}
TY  - JOUR
AU  - Branka Pavlović
TI  - The Category of Compact Metric Spaces and its Functional Analytic Duals
JO  - Publications de l'Institut Mathématique
PY  - 2002
SP  - 29 
VL  - _N_S_72
IS  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272029P/
DO  - 10.2298/PIM0272029P
LA  - en
ID  - 10_2298_PIM0272029P
ER  - 
%0 Journal Article
%A Branka Pavlović
%T The Category of Compact Metric Spaces and its Functional Analytic Duals
%J Publications de l'Institut Mathématique
%D 2002
%P 29 
%V _N_S_72
%N 86
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0272029P/
%R 10.2298/PIM0272029P
%G en
%F 10_2298_PIM0272029P
Branka Pavlović. The Category of Compact Metric Spaces and its Functional Analytic Duals. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 29 . doi : 10.2298/PIM0272029P. http://geodesic.mathdoc.fr/articles/10.2298/PIM0272029P/

Cité par Sources :