The Category of Compact Metric Spaces and its Functional Analytic Duals
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 29
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A Lipschitz algebra $\operatorname{Lip}(X,d_X)$ over a
compact metric space $(X,d_X)$ consists of all complex valued
continuous functions on $(X,d_X)$ which are Lipschitz with respect to
$d_X$ and the standard metric on the complex plane ${\mathbb C}$
(absolute value). The norm on $\operatorname{Lip}(X,d_X)$ is given by
$\|f\|=\sup\{|f(x)|:x\in X\}+\sup\{|f(x)-f(y)|/d_X(x,y): x,y\in X\;\\;
x\ne y\}$. We show that the category $\operatorname{CLip}$ in which
objects are Lipschitz algebras and morphisms are algebra homomorphisms
is dual to the category $\operatorname{CMet}$ in which objects are
compact metric spaces and morphisms are Lipschitz maps. Let $(X,d)$ be
any metric space, and let $Y=\{(x,y)\in X\times X: x\ne y\}$. De Leeuw
derivation defined by the metric $d$ is the operator
$D:C_b(X)\to C_b(Y)$ be defined by $(Df)(x,y)=(f(y)-f(x))/d(x,y)$ for
$(x,y)\in Y$. We consider the category $\operatorname{CDer}$ in which
objects are pairs $(C(X),D_X)$, where $(X,d_X)$ is a compact metric
space and $D_X$ is the correspoding de Leeuw derivation, and morphisms
are all homomorphisms $\nu: C(X)\to C(Y)$ for which
$f\in\operatorname{Domain}(D_X)$ implies
$\nu f\in\operatorname{Domain}(D_Y)$. We show that
$\operatorname{CDer}$ is equivalent to $\operatorname{CLip}$, and that
$\operatorname{CDer}$ is dual to $\operatorname{CMet}$.
DOI :
10.2298/PIM0272029P
Classification :
18B99 18B30 46J10 46L89 46M15.
Keywords: Lipschitz algebras, de Leeuw derivations, dual and equivalent categories.
Keywords: Lipschitz algebras, de Leeuw derivations, dual and equivalent categories.
@article{10_2298_PIM0272029P,
author = {Branka Pavlovi\'c},
title = {The {Category} of {Compact} {Metric} {Spaces} and its {Functional} {Analytic} {Duals}},
journal = {Publications de l'Institut Math\'ematique},
pages = {29 },
publisher = {mathdoc},
volume = {_N_S_72},
number = {86},
year = {2002},
doi = {10.2298/PIM0272029P},
zbl = {1046.18002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272029P/}
}
TY - JOUR AU - Branka Pavlović TI - The Category of Compact Metric Spaces and its Functional Analytic Duals JO - Publications de l'Institut Mathématique PY - 2002 SP - 29 VL - _N_S_72 IS - 86 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272029P/ DO - 10.2298/PIM0272029P LA - en ID - 10_2298_PIM0272029P ER -
%0 Journal Article %A Branka Pavlović %T The Category of Compact Metric Spaces and its Functional Analytic Duals %J Publications de l'Institut Mathématique %D 2002 %P 29 %V _N_S_72 %N 86 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0272029P/ %R 10.2298/PIM0272029P %G en %F 10_2298_PIM0272029P
Branka Pavlović. The Category of Compact Metric Spaces and its Functional Analytic Duals. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 29 . doi: 10.2298/PIM0272029P
Cité par Sources :