On the Difference Between the Distribution Function of the sum and the Maximum of Real Random Variables
Publications de l'Institut Mathématique, _N_S_71 (2002) no. 85, p. 63 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $X$ denote a nonnegative random variable with distribution function (d.f.) $F(x)$. If $F(x)$ is a subexponential d.f. it is well known that the tails of the d.f. of the partial sums and the partial maxima are asymptotically the same. In this paper among others we analyse subexponential d.f. on the real line. It is easy to prove that again partial sums and partial maxima have asymptotically the same d.f.. In this paper we analyse the difference between these two distribution functions. In the main part of the paper we consider independent real random variables $X$ and $Y$ with d.f. $F(x)$ and $G(x)$. Under various conditions we obtain a variety of $O$-, $o$- and exact (asymptotic) estimates for $D(x)=F(x)G(x)-F\star G(x)$ and $R(x)=P(X+Y>x)-P(X>x)-P(Y>x)$. Our results generalize the results of Omey (1994) and Omey and Willekens (1986) where the case $X\geq 0$, $Y\geq 0$ was treated.
DOI : 10.2298/PIM0271063O
Classification : 60E99 60G50 26A12
Keywords: regular variation, subexponential distributions, O-regular variation
@article{10_2298_PIM0271063O,
     author = {Edward Omey},
     title = {On the {Difference} {Between} the {Distribution} {Function} of the sum and the {Maximum} of {Real} {Random} {Variables}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {63 },
     publisher = {mathdoc},
     volume = {_N_S_71},
     number = {85},
     year = {2002},
     doi = {10.2298/PIM0271063O},
     zbl = {1029.60012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0271063O/}
}
TY  - JOUR
AU  - Edward Omey
TI  - On the Difference Between the Distribution Function of the sum and the Maximum of Real Random Variables
JO  - Publications de l'Institut Mathématique
PY  - 2002
SP  - 63 
VL  - _N_S_71
IS  - 85
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0271063O/
DO  - 10.2298/PIM0271063O
LA  - en
ID  - 10_2298_PIM0271063O
ER  - 
%0 Journal Article
%A Edward Omey
%T On the Difference Between the Distribution Function of the sum and the Maximum of Real Random Variables
%J Publications de l'Institut Mathématique
%D 2002
%P 63 
%V _N_S_71
%N 85
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0271063O/
%R 10.2298/PIM0271063O
%G en
%F 10_2298_PIM0271063O
Edward Omey. On the Difference Between the Distribution Function of the sum and the Maximum of Real Random Variables. Publications de l'Institut Mathématique, _N_S_71 (2002) no. 85, p. 63 . doi : 10.2298/PIM0271063O. http://geodesic.mathdoc.fr/articles/10.2298/PIM0271063O/

Cité par Sources :