On the Difference Between the Distribution Function of the sum and the Maximum of Real Random Variables
Publications de l'Institut Mathématique, _N_S_71 (2002) no. 85, p. 63
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $X$ denote a nonnegative random variable with
distribution function (d.f.) $F(x)$. If $F(x)$ is a subexponential
d.f. it is well known that the tails of the d.f. of the partial sums
and the partial maxima are asymptotically the same. In this paper among
others we analyse subexponential d.f. on the real line. It is easy to
prove that again partial sums and partial maxima have asymptotically
the same d.f.. In this paper we analyse the difference between these
two distribution functions. In the main part of the paper we consider
independent real random variables $X$ and $Y$ with d.f. $F(x)$ and
$G(x)$. Under various conditions we obtain a variety of $O$-, $o$- and
exact (asymptotic) estimates for $D(x)=F(x)G(x)-F\star G(x)$ and
$R(x)=P(X+Y>x)-P(X>x)-P(Y>x)$. Our results generalize the results of
Omey (1994) and Omey and Willekens (1986) where the case $X\geq 0$,
$Y\geq 0$ was treated.
DOI :
10.2298/PIM0271063O
Classification :
60E99 60G50 26A12
Keywords: regular variation, subexponential distributions, O-regular variation
Keywords: regular variation, subexponential distributions, O-regular variation
@article{10_2298_PIM0271063O,
author = {Edward Omey},
title = {On the {Difference} {Between} the {Distribution} {Function} of the sum and the {Maximum} of {Real} {Random} {Variables}},
journal = {Publications de l'Institut Math\'ematique},
pages = {63 },
publisher = {mathdoc},
volume = {_N_S_71},
number = {85},
year = {2002},
doi = {10.2298/PIM0271063O},
zbl = {1029.60012},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0271063O/}
}
TY - JOUR AU - Edward Omey TI - On the Difference Between the Distribution Function of the sum and the Maximum of Real Random Variables JO - Publications de l'Institut Mathématique PY - 2002 SP - 63 VL - _N_S_71 IS - 85 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0271063O/ DO - 10.2298/PIM0271063O LA - en ID - 10_2298_PIM0271063O ER -
%0 Journal Article %A Edward Omey %T On the Difference Between the Distribution Function of the sum and the Maximum of Real Random Variables %J Publications de l'Institut Mathématique %D 2002 %P 63 %V _N_S_71 %N 85 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0271063O/ %R 10.2298/PIM0271063O %G en %F 10_2298_PIM0271063O
Edward Omey. On the Difference Between the Distribution Function of the sum and the Maximum of Real Random Variables. Publications de l'Institut Mathématique, _N_S_71 (2002) no. 85, p. 63 . doi: 10.2298/PIM0271063O
Cité par Sources :