On Bootstrap Sample Size in Extreme Value Theory
Publications de l'Institut Mathématique, _N_S_71 (2002) no. 85, p. 21
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
It has been known for a long time that for bootstrapping the
probability distribution of the maximum of a sample consistently, the
bootstrap sample size needs to be of smaller order than the original
sample size. See Jun Shao and Dongsheng Tu (1995), Ex. 3.9, p. 123.
We show that the same is true if we use the bootstrap for estimating an
intermediate quantile.
@article{10_2298_PIM0271021G,
author = {Jaap L. Geluk and Laurend de Haan},
title = {On {Bootstrap} {Sample} {Size} in {Extreme} {Value} {Theory}},
journal = {Publications de l'Institut Math\'ematique},
pages = {21 },
publisher = {mathdoc},
volume = {_N_S_71},
number = {85},
year = {2002},
doi = {10.2298/PIM0271021G},
zbl = {1034.60043},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0271021G/}
}
TY - JOUR AU - Jaap L. Geluk AU - Laurend de Haan TI - On Bootstrap Sample Size in Extreme Value Theory JO - Publications de l'Institut Mathématique PY - 2002 SP - 21 VL - _N_S_71 IS - 85 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0271021G/ DO - 10.2298/PIM0271021G LA - en ID - 10_2298_PIM0271021G ER -
%0 Journal Article %A Jaap L. Geluk %A Laurend de Haan %T On Bootstrap Sample Size in Extreme Value Theory %J Publications de l'Institut Mathématique %D 2002 %P 21 %V _N_S_71 %N 85 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0271021G/ %R 10.2298/PIM0271021G %G en %F 10_2298_PIM0271021G
Jaap L. Geluk; Laurend de Haan. On Bootstrap Sample Size in Extreme Value Theory. Publications de l'Institut Mathématique, _N_S_71 (2002) no. 85, p. 21 . doi: 10.2298/PIM0271021G
Cité par Sources :