On the spectral radius of bicyclic graphs
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 30 (2005), p. 93 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $K_3$ and $K_3'$ be two complete graphs of order 3 with disjoint vertex sets. Let $B_n^{\ast}(0)$ be the 5-vertex graph, obtained by identifying a vertex of $K_3$ with a vertex of $K_3'$ . Let $B_n^{\ast\ast}(0)$ be the 4-vertex graph, obtained by identifying two vertices of $K_3$ each with a vertex of $K_3'$ . Let $B_n^{\ast}(k)$ be graph of order $n$ , obtained by attaching $k$ paths of almost equal length to the vertex of degree 4 of $B_n^{\ast}(0)$ . Let $B_n^{\ast\ast}(k)$ be the graph of order $n$ , obtained by attaching $k$ paths of almost equal length to a vertex of degree 3 of $B_n^{\ast\ast}(0)$ . Let ${\cal B}_n(k)$ be the set of all connected bicyclic graphs of order $n$ , possessing $k$ pendent vertices. One of the authors recently proved that among the elements of ${\cal B}_n(k)$ , either $B_n^{\ast}(k)$ or $B_n^{\ast\ast}(k)$ have the greatest spectral radius. We now show that for $k \geq 1$ and $n \geq k+5$ , among the elements of ${\cal B}_n(k)$ , the graph $B_n^{\ast}(k)$ has the greatest spectral radius.
DOI : 10.2298/BMAT0530093P
Classification : 05C50 05C35
Keywords: spectrum (of graph), spectral radius (of graph), bicyclic graphs, extremal graphs
@article{10_2298_BMAT0530093P,
     author = {M. Petrovi\'c and I. Gutman and Shu-Guang Guo},
     title = {On the spectral radius of bicyclic graphs},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {93 },
     publisher = {mathdoc},
     volume = {30},
     year = {2005},
     doi = {10.2298/BMAT0530093P},
     zbl = {1120.05310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/BMAT0530093P/}
}
TY  - JOUR
AU  - M. Petrović
AU  - I. Gutman
AU  - Shu-Guang Guo
TI  - On the spectral radius of bicyclic graphs
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2005
SP  - 93 
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/BMAT0530093P/
DO  - 10.2298/BMAT0530093P
LA  - en
ID  - 10_2298_BMAT0530093P
ER  - 
%0 Journal Article
%A M. Petrović
%A I. Gutman
%A Shu-Guang Guo
%T On the spectral radius of bicyclic graphs
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2005
%P 93 
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/BMAT0530093P/
%R 10.2298/BMAT0530093P
%G en
%F 10_2298_BMAT0530093P
M. Petrović; I. Gutman; Shu-Guang Guo. On the spectral radius of bicyclic graphs. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 30 (2005), p. 93 . doi : 10.2298/BMAT0530093P. http://geodesic.mathdoc.fr/articles/10.2298/BMAT0530093P/

Cité par Sources :