Some relations between distance-based polynomials of trees
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 30 (2005), p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Hosoya polynomial $H(G,\lambda)$ of a graph $G$ has the property that its first derivative at $\lambda=1$ is equal to the Wiener index. Sometime ago two distance-based graph invariants were studied -- the Schultz index $S$ and its modification $S^\ast$ . We construct distance--based graph polynomials $H_1(G,\lambda)$ and $H_2(G,\lambda)$ , such that their first derivatives at $\lambda=1$ are, respectively, equal to $S$ and $S^\ast$ . In case of trees, $H_1(G,\lambda)$ and $H_2(G,\lambda)$ are related with $H(G,\lambda)$ .
DOI : 10.2298/BMAT0530001G
Classification : 05C12 05C05
Keywords: Graph polynomial, distance (in graph), tree, Wiener index, Schultz index
@article{10_2298_BMAT0530001G,
     author = {I. Gutman},
     title = {Some relations between distance-based polynomials of trees},
     journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
     pages = {1 },
     publisher = {mathdoc},
     volume = {30},
     year = {2005},
     doi = {10.2298/BMAT0530001G},
     zbl = {1120.05304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/BMAT0530001G/}
}
TY  - JOUR
AU  - I. Gutman
TI  - Some relations between distance-based polynomials of trees
JO  - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
PY  - 2005
SP  - 1 
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/BMAT0530001G/
DO  - 10.2298/BMAT0530001G
LA  - en
ID  - 10_2298_BMAT0530001G
ER  - 
%0 Journal Article
%A I. Gutman
%T Some relations between distance-based polynomials of trees
%J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles
%D 2005
%P 1 
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/BMAT0530001G/
%R 10.2298/BMAT0530001G
%G en
%F 10_2298_BMAT0530001G
I. Gutman. Some relations between distance-based polynomials of trees. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 30 (2005), p. 1 . doi : 10.2298/BMAT0530001G. http://geodesic.mathdoc.fr/articles/10.2298/BMAT0530001G/

Cité par Sources :