In this paper, the Gould-Hopper based fully degenerate type2 poly-Stirling polynomials of the first kind with a $q$ parameter are considered and some of their diverse identities and properties are investigated. Then, the Gould-Hopper based fully degenerate type2 poly-Bernoulli polynomials with a $q$ parameter are introduced and some of their properties are analyzed and derived. Furthermore, several formulas and relations covering implicit summation formulas, recurrence relations and symmetric property are attained.
Keywords: Gould-Hopper polynomials, Bernoulli polynomials, poly-Bernoulli polynomials, degenerate Bernoulli function, Stirling numbers of the first kind
Negiz, E.  1 ; Acikgoz, M.  1 ; Duran, U.  2
@article{10_22436_jnsa_016_01_02,
author = {Negiz, E. and Acikgoz, M. and Duran, U.},
title = {On {Gould-Hopper} based fully degenerate {Type2} {poly-Bernoulli} polynomials with a \(q\)-parameter},
journal = {Journal of nonlinear sciences and its applications},
pages = {18-29},
year = {2023},
volume = {16},
number = {1},
doi = {10.22436/jnsa.016.01.02},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.02/}
}
TY - JOUR AU - Negiz, E. AU - Acikgoz, M. AU - Duran, U. TI - On Gould-Hopper based fully degenerate Type2 poly-Bernoulli polynomials with a \(q\)-parameter JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 18 EP - 29 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.02/ DO - 10.22436/jnsa.016.01.02 LA - en ID - 10_22436_jnsa_016_01_02 ER -
%0 Journal Article %A Negiz, E. %A Acikgoz, M. %A Duran, U. %T On Gould-Hopper based fully degenerate Type2 poly-Bernoulli polynomials with a \(q\)-parameter %J Journal of nonlinear sciences and its applications %D 2023 %P 18-29 %V 16 %N 1 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.02/ %R 10.22436/jnsa.016.01.02 %G en %F 10_22436_jnsa_016_01_02
Negiz, E.; Acikgoz, M.; Duran, U. On Gould-Hopper based fully degenerate Type2 poly-Bernoulli polynomials with a \(q\)-parameter. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 18-29. doi: 10.22436/jnsa.016.01.02
[1] Polylogarithms and poly-Bernoulli polynomials, Kyushu J. Math., Volume 65 (2011), pp. 15-24 | Zbl | DOI
[2] Poly-Bernoulli numbers and polynomials with a q parameter, J. Number Theory, Volume 152 (2015), pp. 38-54 | Zbl | DOI
[3] Y. B. Cheikh, A. Zaghouani, J. Comput. Appl. Math., Volume 156 (2003), pp. 253-263 | DOI | Zbl
[4] Finite sums and generalized forms of Bernoulli polynomials, Rend. Mat. Appl., Volume 19 (1999), pp. 385-391 | Zbl
[5] Generalized Gould-Hopper based fully degenerate central Bell polynomials, Turkish J. Anal. Number Theory, Volume 7 (2019), pp. 124-134
[6] Hermite based poly-Bernoulli polynomials with a q-parameter, Adv. Stud. Contemp. Math., Volume 28 (2018), pp. 285-296 | Zbl
[7] On Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q-parameter, Mathematics, Volume 7 (2019), pp. 1-14 | DOI
[8] A note on degenerate Hermite poly-Bernoulli numbers and polynomials, J. Class. Anal., Volume 8 (2016), pp. 65-76 | Zbl | DOI
[9] A note on Hermite poly-Bernoulli numbers and polynomials of the second kind, Turkish J. Anal. Number Theory, Volume 3 (2015), pp. 120-125
[10] Degenerate Poly-Bernoulli numbers and polynomials, Informatica, Volume 31 (2020), pp. 2-8
[11] Fully degenerate poly-Bernoulli polynomials with a q parameter, Filomat, Volume 30 (2016), pp. 1029-1035 | Zbl | DOI
[12] Fully degenerate poly-Bernoulli numbers and polynomials, Open Math., Volume 14 (2016), pp. 545-556 | DOI | Zbl
[13] On the Hermite based Genocchi polynomials, Adv. Stud. Contemp. Math., Volume 23 (2013), pp. 13-17 | Zbl
[14] Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials, Adv. Differ. Equ., Volume 2013 (2013), pp. 1-13 | DOI | Zbl
[15] Some implicit summation formulas and symmetric identities for the generalized Hermite- Bernoulli polynomials, Mediterr. J. Math., Volume 12 (2015), pp. 679-695 | Zbl | DOI
[16] A new generalization of the Bernoulli and related polynomials, Russ. J. Math. Phys., Volume 17 (2010), pp. 251-261 | Zbl | DOI
Cité par Sources :