On Gould-Hopper based fully degenerate Type2 poly-Bernoulli polynomials with a $q$-parameter :
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 18-29 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this paper, the Gould-Hopper based fully degenerate type2 poly-Stirling polynomials of the first kind with a $q$ parameter are considered and some of their diverse identities and properties are investigated. Then, the Gould-Hopper based fully degenerate type2 poly-Bernoulli polynomials with a $q$ parameter are introduced and some of their properties are analyzed and derived. Furthermore, several formulas and relations covering implicit summation formulas, recurrence relations and symmetric property are attained.

DOI : 10.22436/jnsa.016.01.02
Classification : 33C45, 11B68, 11B73
Keywords: Gould-Hopper polynomials, Bernoulli polynomials, poly-Bernoulli polynomials, degenerate Bernoulli function, Stirling numbers of the first kind

Negiz, E.  1   ; Acikgoz, M.  1   ; Duran, U.  2

1 Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkiye
2 Department of Basic Sciences of Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, TR-31200, Hatay, Turkiye
@article{10_22436_jnsa_016_01_02,
     author = {Negiz, E. and Acikgoz, M. and Duran, U.},
     title = {On {Gould-Hopper} based fully degenerate {Type2} {poly-Bernoulli} polynomials with a \(q\)-parameter},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {18-29},
     year = {2023},
     volume = {16},
     number = {1},
     doi = {10.22436/jnsa.016.01.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.02/}
}
TY  - JOUR
AU  - Negiz, E.
AU  - Acikgoz, M.
AU  - Duran, U.
TI  - On Gould-Hopper based fully degenerate Type2 poly-Bernoulli polynomials with a \(q\)-parameter
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 18
EP  - 29
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.02/
DO  - 10.22436/jnsa.016.01.02
LA  - en
ID  - 10_22436_jnsa_016_01_02
ER  - 
%0 Journal Article
%A Negiz, E.
%A Acikgoz, M.
%A Duran, U.
%T On Gould-Hopper based fully degenerate Type2 poly-Bernoulli polynomials with a \(q\)-parameter
%J Journal of nonlinear sciences and its applications
%D 2023
%P 18-29
%V 16
%N 1
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.02/
%R 10.22436/jnsa.016.01.02
%G en
%F 10_22436_jnsa_016_01_02
Negiz, E.; Acikgoz, M.; Duran, U. On Gould-Hopper based fully degenerate Type2 poly-Bernoulli polynomials with a \(q\)-parameter. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 18-29. doi: 10.22436/jnsa.016.01.02

[1] Bayad, A.; Hamahata, Y. Polylogarithms and poly-Bernoulli polynomials, Kyushu J. Math., Volume 65 (2011), pp. 15-24 | Zbl | DOI

[2] Cenkci, M.; Komatsu, T. Poly-Bernoulli numbers and polynomials with a q parameter, J. Number Theory, Volume 152 (2015), pp. 38-54 | Zbl | DOI

[3] sets, Some discrete d-orthogonal polynomial Y. B. Cheikh, A. Zaghouani, J. Comput. Appl. Math., Volume 156 (2003), pp. 253-263 | DOI | Zbl

[4] Dattoli, G.; Lorenzutta, S.; Cesarano, C. Finite sums and generalized forms of Bernoulli polynomials, Rend. Mat. Appl., Volume 19 (1999), pp. 385-391 | Zbl

[5] Duran, U.; Acikgoz, M. Generalized Gould-Hopper based fully degenerate central Bell polynomials, Turkish J. Anal. Number Theory, Volume 7 (2019), pp. 124-134

[6] Duran, U.; Acikgoz, M.; Araci, S. Hermite based poly-Bernoulli polynomials with a q-parameter, Adv. Stud. Contemp. Math., Volume 28 (2018), pp. 285-296 | Zbl

[7] Duran, U.; Sadjang, P. N. On Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q-parameter, Mathematics, Volume 7 (2019), pp. 1-14 | DOI

[8] Khan, W. A. A note on degenerate Hermite poly-Bernoulli numbers and polynomials, J. Class. Anal., Volume 8 (2016), pp. 65-76 | Zbl | DOI

[9] Khan, W. A.; Khan, N. U.; Zia, S. A note on Hermite poly-Bernoulli numbers and polynomials of the second kind, Turkish J. Anal. Number Theory, Volume 3 (2015), pp. 120-125

[10] Kim, T.; Kim, D. S.; Kim, H. Y.; Jang, L.-C. Degenerate Poly-Bernoulli numbers and polynomials, Informatica, Volume 31 (2020), pp. 2-8

[11] Kim, D. S.; Kim, T. K.; Mansour, T.; Seo, J.-J. Fully degenerate poly-Bernoulli polynomials with a q parameter, Filomat, Volume 30 (2016), pp. 1029-1035 | Zbl | DOI

[12] Kim, T.; Kim, D. S.; Seo, J.-J. Fully degenerate poly-Bernoulli numbers and polynomials, Open Math., Volume 14 (2016), pp. 545-556 | DOI | Zbl

[13] Kurt, B.; Simsek, Y. On the Hermite based Genocchi polynomials, Adv. Stud. Contemp. Math., Volume 23 (2013), pp. 13-17 | Zbl

[14] zarslan, M. A. O¨ Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials, Adv. Differ. Equ., Volume 2013 (2013), pp. 1-13 | DOI | Zbl

[15] Pathan, M. A.; Khan, W. A. Some implicit summation formulas and symmetric identities for the generalized Hermite- Bernoulli polynomials, Mediterr. J. Math., Volume 12 (2015), pp. 679-695 | Zbl | DOI

[16] Srivastava, H. M.; Garg, M.; Choudhary, S. A new generalization of the Bernoulli and related polynomials, Russ. J. Math. Phys., Volume 17 (2010), pp. 251-261 | Zbl | DOI

Cité par Sources :