Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces :
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 359-371 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this article, we introduce a hybrid iteration involving inertial-term for split equilibrium problem and fixed point for a finite family of asymptotically strictly pseudocontractive mappings. We prove that the sequence converges strongly to a solution of split equilibrium problem and a common fixed point of a finite family of asymptotically strictly pseudocontractive mappings. The results proved extend and improve recent results of Chang et al. [S. S. Chang, H. W. J. Lee, C. K. Chan, L. Wang, L. J. Qin, Appl. Math. Comput., $\bf 219$ (2013), 10416--10424], Dewangan et al. [R. Dewangan, B. S. Thakur, M. Postolache, J. Inequal. Appl., $\bf 2014$ (2014), 11 pages], and many others.

DOI : 10.22436/jnsa.014.05.06
Classification : 47H09, 47H10, 49M05, 54H25
Keywords: Total asymptotically strict pseudocontractive mapping, split equilibrium problem, fixed point problem, inertial-step, bounded linear operator

Ezeora, J. N.   1   ; Jackreece, P. C.   1

1 Department of Mathematics and Statistics, University of Port Harcpourt, Nigeria
@article{10_22436_jnsa_014_05_06,
     author = {Ezeora, J.  N.   and Jackreece, P. C. },
     title = {Iterative solution of split equilibrium and fixed point problems in real {Hilbert} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {359-371},
     year = {2021},
     volume = {14},
     number = {5},
     doi = {10.22436/jnsa.014.05.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.06/}
}
TY  - JOUR
AU  - Ezeora, J.  N.  
AU  - Jackreece, P. C. 
TI  - Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 359
EP  - 371
VL  - 14
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.06/
DO  - 10.22436/jnsa.014.05.06
LA  - en
ID  - 10_22436_jnsa_014_05_06
ER  - 
%0 Journal Article
%A Ezeora, J.  N.  
%A Jackreece, P. C. 
%T Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces
%J Journal of nonlinear sciences and its applications
%D 2021
%P 359-371
%V 14
%N 5
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.06/
%R 10.22436/jnsa.014.05.06
%G en
%F 10_22436_jnsa_014_05_06
Ezeora, J.  N.  ; Jackreece, P. C. . Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 359-371. doi: 10.22436/jnsa.014.05.06

[1] Alber, Y. I.; Chidume, C. E.; Zegeye, H. Approximating fixed points of total asymptotically nonexpansive mappings, Fixed Point Theory Appl., Volume 2006 (2006), pp. 1-20

[2] Anh, P. N. A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization, Volume 62 (2013), pp. 271-283 | DOI

[3] Aoyama, K.; Kohsaka, F.; Takahashi, W. Three generalizations of firmly nonexpansive mappings: their relations and continuity properties, J. Nonlinear Convex Anal., Volume 10 (2009), pp. 131-147

[4] Arfat, Y.; Kumam, P.; Ngiamsunthorn, P. Sa; Khan, M. A. A.; Sarwar, H.; Fukhar-ud-Din, H. Approximation results for split equilibrium problems and fixed point problems of nonexpansive semigroup in Hilbert spaces, Adv. Difference Equ., Volume 2020 (2020), pp. 1-21 | DOI

[5] Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., Volume 2 (2009), pp. 183-202 | DOI

[6] Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems, Math. Student., Volume 63 (1994), pp. 123-145

[7] Browder, F. E.; Petryshyn, W. V. Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228 | DOI

[8] Byrne, C. Iterative oblique projection onto convex subsets and the split feasibility problems, Inverse Problem, Volume 18 (2002), pp. 441-453 | DOI

[9] Ceng, L.-C.; Yao, J.-C. A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., Volume 214 (2008), pp. 186-201 | DOI

[10] Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A. A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., Volume 51 (2006), pp. 2353-2365 | DOI

[11] Censor, Y.; Elfving, T. A multi-projection algorithm using Bregman projections in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239 | DOI

[12] Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T. The multi-set split feasibility problem and its applications, Inverse Problem, Volume 21 (2005), pp. 2071-2084 | DOI

[13] Censor, Y.; Motov, A.; Segal, A. Pertured projections and subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl., Volume 327 (2007), pp. 1244-1256 | DOI

[14] Chang, S. S.; Lee, H. W. J.; Chan, C. K.; Wang, L.; Qin, L. J. Split feasibility problem for Quasi-nonexpansive multi-valued mappings and total asymptotically strict pseudo contractive mappings, Appl. Math. Comput., Volume 219 (2013), pp. 10416-10424 | DOI

[15] Chidume, C. Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series: Lecture Notes in Mathematics, Berlin, 2009

[16] Combettes, P. L. The convex feasibility problem in image recovery, Adv. Imaging Electron Phys., Volume 95 (1996), pp. 155-270 | DOI

[17] Combettes, P. L.; Hirstoaga, S. A. Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136

[18] Dewangan, R.; Thakur, B. S.; Postolache, M. A hybrid iteration for asymptotically strictly pseudocontractive mappings, J. Inequal. Appl.,, Volume 2014 (2014), pp. 1-11 | DOI

[19] Ezeora, J. N. Iterative Solution of Fixed Points Problem, System of Generalized Mixed Equilibrium Problems and Variational Inclusion Problems, Thai J. Math., Volume 12 (2014), pp. 223-244

[20] Ezeora, J. N.; Ogbonna, R. C. Split feasibilty problem for countable family of multi-valued nonlinear mappings, Mathematicki Vesnik, Volume 70 (2018), pp. 233-242

[21] Hieu, D. V. An inertial-like proximal algorithm for equilibrium problems, Math. Methods Oper. Res., Volume 88 (2018), pp. 399-415 | DOI

[22] Izuchukwu, C.; Isiogugu, F. O.; Okeke, C. C. A new viscosity-type iteration for a finite family of split variational inclusion and fixed point problems between Hilbert and Banach spaces, J. Inequal. Appl., Volume 2019 (2019), pp. 1-33 | DOI

[23] Izuchukwu, C.; Okeke, C. C.; Isiogugu, F. O. A viscosity iterative technique for split variational inclusion and fixed point problems between a Hilbert space and a Banach space, J. Fixed Point Theory Appl., Volume 20 (2018), pp. 1-25 | DOI

[24] Liu, Q. Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal., Volume 26 (1996), pp. 1835-1842 | DOI

[25] Long, L. V.; Thong, D. V.; Dung, V. T. New algorithms for the split variational inclusion problems and application to split feasibility problems, Optimization, Volume 68 (2019), pp. 2335-2363 | DOI

[26] Ma, Z.; Wang, L. An algorithm with strong convergence for the split common fixed point problem of total asymptotically strict pseudocontraction mappings,, J. Inequal. Appl., Volume 2015 (2015), pp. 1-13 | DOI

[27] Masad, E.; Reich, S. A note on the multiple-set split feasibility problem in Hilbert spaces, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 367-371

[28] Plubtieng, S.; Sombut, K. Weak convergence theorems for a system of mixed equilibrium problems and nonspreading mappings in a Hilbert space, J. Inequal. Appl., Volume 2010 (2010), pp. 1-12 | DOI

[29] Polyak, B. T. Some methods of speeding up the convergence of iteration methods, Ussr Comput. Math. Math. Phys., Volume 4 (1964), pp. 1-17 | DOI

[30] Shehu, Y. Fixed Point Solutions of Generalized Equilibrium Problems for Nonexpansive Mappings, J. Comput. Appl. Math., Volume 234 (2010), pp. 892-898 | DOI

[31] Sitthithakerngkiet, K.; Deepho, J.; Martınez-Moreno, J.; Kumam, P. Convergence analysis of a general iterative algorithm for finding a common solution of split variational inclusion and optimization problems, Numer. Algorithms, Volume 79 (2018), pp. 801-824 | DOI

[32] Takahashi, S.; Takahashi, W. Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., Volume 69 (2008), pp. 1025-1033 | DOI

[33] Udriste, C. Convex Functions and Optimization Methods on Riemannian Manifolds, Kluwer Academic Publishers Group, Dordrecht, 1994 | DOI

[34] Xu, H.-K. Iterative methods for split feasibility problem in infinite dimensional Hilbert spaces, Inverse Problems, Volume 26 (2010), pp. 1-17 | DOI

[35] Yang, L.; Chang, S.-S.; Cho, Y. J.; Kim, J. K. Multiple-set split feasibility problems for total asymp-totically strict pseudocontractions mappings, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-11 | DOI

[36] Zhao, J.; Hou, D. A self-adaptive iterative algorithm for the split common fixed point problems, Numer. Algorithms, Volume 82 (2019), pp. 1047-1063 | DOI

Cité par Sources :